Browse > Article
http://dx.doi.org/10.5713/ajas.15.0011

The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil  

Choi, Seong Ho (Department of Animal Science, Chungbuk National University)
Park, Sung Kwon (Department of Food Science and Technology, Sejong University)
Choi, Chang Weon (Department of Animal Resources, Daegu University)
Li, Xiang Zi (Department of Animal Science, Yanbian University)
Kim, Kyoung Hoon (Graduate School of International Agricultural Technology, and Institute of Green Bio Science & Technology, Seoul National University, Seoul National University)
Kim, Won Young (Department of Animal Science, Chungbuk National University)
Jeong, Joon (Livestock Research Center, National Agricultural Cooperatives Federation)
Johnson, Bradley J. (Department of Animal and Food Science, Texas Tech University)
Zan, Linsen (Department of Animal Science, Northwest Agricultural and Forestry University)
Smith, Stephen B. (Department of Animal Science, Texas A&M University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.3, 2016 , pp. 404-412 More about this Journal
Abstract
We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and ${\alpha}$-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha ($AMPK{\alpha}$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) $PPAR{\gamma}$ gene expression at the intermediate sample time. At the terminal sample time, $PPAR{\gamma}$ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). $AMPK{\alpha}$ gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta ($CEBP{\beta}$) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers. Contrary to our original hypothesis, palm oil did not promote adipogenic gene expression in s.c. and i.m. adipose tissue.
Keywords
Adipose Tissue; Fatty Acids; Gene Expression; Palm Oil; Stearoyl-coenzyme A Desaturase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adams, T. H., R. L. Walzem, D. R. Smith, S. Tseng, and S. B. Smith. 2010. Hamburger high in total, saturated and trans-fatty acids decreases HDL cholesterol and LDL particle diameter, and increases TAG, in mildly hypercholesterolaemic men. Br. J. Nutr. 103:91-98.   DOI
2 Archibeque, S. L., D. K. Lunt, C. D. Gilbert, R. K. Tume, and S. B. Smith. 2005. Fatty acid indices of stearoyl-CoA desaturase do not reflect actual stearoyl-CoA desaturase enzyme activities in adipose tissues of beef steers finished with corn-, flaxseed-, or sorghum-based diets. J. Anim. Sci. 83:1153-1166.   DOI
3 Brown, A. J., S. M. Goldsworthy, A. A. Barnes, M. M. Eilert, L. Tcheang, D. Daniels, A. I. Muir, M. J. Wigglesworth, I. Kinghorn, N. J. Fraser, N. B. Pike, J. C. Strum, K. M. Steplewski, P. R. Murdock, J. C. Holder, F. H. Marshall, P. G. Szekeres, S. Wilson, D. M. Ignar, S. M. Foord, A. Wise, and S. J. Dowell. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278:11312-11319.   DOI
4 Cao, Z., R. M. Umek, and S. L. McKnight. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5:1538-1552.   DOI
5 Choi, S. H., G. O. Gang, J. E. Sawyer, B. J. Johnson, K. H. Kim, C. W. Choi, and S. B. Smith. 2013. Fatty acid biosynthesis and lipogenic enzyme activities in subcutaneous adipose tissue of feedlot steers fed supplementary palm oil or soybean oil. J. Anim. Sci. 91:2091-2098.   DOI
6 Choi, S. H., S. K. Park, B. J. Johnson, K. Y. Chung, C. W. Choi, K. H. Kim, W. Y. Kim, and B. Smith. 2015. AMPK${\alpha}$, C/EBP${\beta}$, CPT1${\beta}$, GPR43, PPAR, and SCD gene expression in singleand co-cultured bovine satellite cells and intramuscular preadipocytes treated with palmitic, stearic, oleic, and linoleic acid. Asian Australas. J. Anim. Sci. 28:411-419.   DOI
7 Chung, K. Y., D. K. Lunt, H. Kawachi, H. Yano, and S. B. Smith. 2007. Lipogenesis and stearoyl-CoA desaturase gene expression and enzyme activity in adipose tissue of short-and long-fed Angus and Wagyu steers fed corn-or hay-based diets. J. Anim. Sci. 85:380-387.   DOI
8 Duckett, S. K., S. L. Pratt, and E. Pavan. 2009. Corn oil or corn grain supplementation to steers grazing endophyte-free tall fescue. II. Effects on subcutaneous fatty acid content and lipogenic gene expression. J. Anim. Sci. 87:1120-1128.   DOI
9 Engle, T. E., J. W. Spears, V. Fellner, and J. Odle. 2000. Effects of soybean oil and dietary copper on ruminal and tissue lipid metabolism in finishing steers. J. Anim. Sci. 78:2713-2721.   DOI
10 Ge, H., X. Li, J. Weiszmann, P. Wang, H. Baribault, J. L. Chen, H. Tian, and Y. Li. 2008. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519-4526.   DOI
11 Joseph, S. J., S. L. Pratt, E. Pavan, R. Rekaya, and S. K. Duckett. 2010. Omega-6 fat supplementation alters lipogenic gene expression in bovine subcutaneous adipose tissue. Gene Regul. Syst. Bio. 19:91-101.
12 Gilmore, L. A., R. L. Walzem, S. F. Crouse, D. R. Smith, T. H. Adams, V. Vaidyanathan, X. Cao, and S. B. Smith. 2011. Consumption of high-oleic acid ground beef increases HDLcholesterol concentration but both high-and low-oleic acid ground beef decrease HDL particle diameter in normocholesterolemic men. J. Nutr. 141:1188-1194.   DOI
13 Gilmore, L. A., S. F. Crouse, A. Carbuhn, J. Klooster, J. A. Calles, T. Meade, and S. B. Smith. 2013. Exercise attenuates the increase in plasma monounsaturated fatty acids and highdensity lipoprotein cholesterol but not high-density lipoprotein 2b cholesterol caused by high-oleic ground beef in women. Nutr. Res. 33:1003-1011.   DOI
14 Hardie, D. G. 2007. Biochemistry. Balancing cellular energy. Science 315:1671-1672.   DOI
15 Kimura, I., K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, K. Terasawa, D. Kashihara, K. Hirano, T. Tani, T. Takahashi, S. Miyauchi, G. Shioi, H. Inoue, and G. Tsujimoto. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4:1829.   DOI
16 Ludden, P. A., O. Kucuk, D. C. Rule, and B. W. Hess. 2009. Growth and carcass fatty acid composition of beef steers fed soybean oil for increasing duration before slaughter. Meat Sci. 82:185-192.   DOI
17 Martin, G. S., D. K. Lunt, K. G. Britain, and S. B. Smith. 1999. Postnatal development of stearoyl coenzyme A desaturase gene expression and adiposity in bovine subcutaneous adipose tissue. J. Anim. Sci. 77:630-636.   DOI
18 NRC. 2000. Nutrient Requirements of Beef Cattle. 7th rev. ed. National Academy Press, Washington, DC, USA.
19 Smith, S. B., G. W. Go, B. J. Johnson, K. Y. Chung, S. H. Choi, J. E. Sawyer, D. T. Silvey, L. A. Gilmore, G. Ghahramany, and K. H. Kim. 2012. Adipogenic gene expression and fatty acid composition in subcutaneous adipose tissue depots of Angus steers between 9 and 16 months of age. J. Anim. Sci. 90:2505-2514.   DOI
20 Smith, S. B., A. Yang, T. W. Larsen, and R. K. Tume. 1998. Positional analysis of triacylglycerols from bovine adipose tissue lipids varying in degree of unsaturation. Lipids 33:197-207.   DOI
21 Smith, S. B., H. Kawachi, C. B. Choi, C. W. Choi, G. Wu, and J. E. Sawyer. 2009. Cellular regulation of bovine intramuscular adipose tissue development and composition. J. Anim. Sci. 87(14 Suppl):E72-82.   DOI
22 Song, M. K., G. L. Jin, B. J. Ji, S. S. Chang, J. Jeong, S. B. Smith, and S. H. Choi. 2010. Conjugated linoleic acids content in M.longissimus dorsi of Hanwoo steers fed a concentrate supplemented with soybean oil, sodium bicarbonate-based monensin, fish oil. Meat Sci. 85:210-214.   DOI
23 St. John, L. C., D. K. Lunt, and S. B. Smith. 1991. Fatty acid elongation and desaturation enzyme activities of bovine liver and subcutaneous adipose tissue microsomes. J. Anim. Sci. 69:1064-1073.   DOI
24 Tontonoz, P., E. Hu, R. A. Graves, A. I. Budavari, and B. M. Spiegelman. 1994. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8:1224-1234.   DOI
25 Underwood, K. R., J. Tong, M. J. Zhu, Q. W. Shen, W. J. Means, S. P. Ford, S. I. Paisley, B. W. Hess, and M. Du. 2007. Relationship between kinase phosphorylation, muscle fiber typing, and glycogen accumulation in longissimus muscle of beef cattle with high and low intramuscular fat. J. Agric. Food Chem. 55:9698-9703.   DOI
26 Vasconcelos, J. T. and M. L. Galyean. 2007. Nutritional recommendations of feedlot consulting nutritionists: the 2007 Texas Tech University survey. J. Anim. Sci. 85:2772-2781.   DOI
27 Wan, Z., J. Root-McCaig, L. Castellani, B. E. Kemp, G. R. Steinberg, and D. C. Wright. 2014. Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue. Obesity (Silver Spring) 22:730-738.   DOI
28 Westerling, D. B. and H. B. Hedrick. 1979. Fatty acid composition of bovine lipids as influenced by diet, sex and anatomical location and relationship to sensory characteristics. J. Anim. Sci. 48:1343-1348.   DOI
29 Yin, W., J. Mu, and M. J. Birnbaum. 2003. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes. J. Biol. Chem. 278:43074-43080.   DOI