Browse > Article
http://dx.doi.org/10.5713/ajas.16.0183

A Major Locus for Quantitatively Measured Shank Skin Color Traits in Korean Native Chicken  

Jin, S. (Division of Animal and Dairy Science, Chungnam National University)
Lee, J.H. (Division of Animal and Dairy Science, Chungnam National University)
Seo, D.W. (Division of Animal and Dairy Science, Chungnam National University)
Cahyadi, M. (Division of Animal and Dairy Science, Chungnam National University)
Choi, N.R. (Division of Animal and Dairy Science, Chungnam National University)
Heo, K.N. (Poultry Research Institute, National Institute of Animal Science, Rural Development Administration)
Jo, C. (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University)
Park, H.B. (Division of Animal and Dairy Science, Chungnam National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.11, 2016 , pp. 1555-1561 More about this Journal
Abstract
Shank skin color of Korean native chicken (KNC) shows large color variations. It varies from white, yellow, green, bluish or grey to black, whilst in the majority of European breeds the shanks are typically yellow-colored. Three shank skin color-related traits (i.e., lightness [$L^*$], redness [$a^*$], and yellowness [$b^*$]) were measured by a spectrophotometer in 585 progeny from 68 nuclear families in the KNC resource population. We performed genome scan linkage analysis to identify loci that affect quantitatively measured shank skin color traits in KNC. All these birds were genotyped with 167 DNA markers located throughout the 26 autosomes. The SOLAR program was used to conduct multipoint variance-component quantitative trait locus (QTL) analyses. We detected a major QTL that affects $b^*$ value (logarithm of odds [LOD] = 47.5, $p=1.60{\times}10^{-49}$) on GGA24 (GGA for Gallus gallus). At the same location, we also detected a QTL that influences $a^*$ value (LOD = 14.2, $p=6.14{\times}10^{-16}$). Additionally, beta-carotene dioxygenase 2 (BCDO2), the obvious positional candidate gene under the linkage peaks on GGA24, was investigated by the two association tests: i.e., measured genotype association (MGA) and quantitative transmission disequilibrium test (QTDT). Significant associations were detected between BCDO2 g.9367 A>C and $a^*$ ($P_{MGA}=1.69{\times}10^{-28}$; $P_{QTDT}=2.40{\times}10^{-25}$). The strongest associations were between BCDO2 g.9367 A>C and $b^*$ ($P_{MGA}=3.56{\times}10^{-66}$; $P_{QTDT}=1.68{\times}10^{-65}$). However, linkage analyses conditional on the single nucleotide polymorphism indicated that other functional variants should exist. Taken together, we demonstrate for the first time the linkage and association between the BCDO2 locus on GGA24 and quantitatively measured shank skin color traits in KNC.
Keywords
Linkage and Association; Quantitative Trait Locus; BCDO2; Shank Skin Color; Korean Native Chicken;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Abecasis, G. R., L. R. Cardon, and W. O. Cookson. 2000. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66:279-292.   DOI
2 Almasy, L. and J. Blangero. 2004. Exploring positional candidate genes: linkage conditional on measured genotype. Behav. Genet. 34:173-177.   DOI
3 Almasy, L. and J. Blangero. 2010. Variance component methods for analysis of complex phenotypes. Cold Spring Harb. Protoc. 2010:pdb.top77.
4 Andersson, L. 2003. Melanocortin receptor variants with phenotypic effects in horse, pig, and chicken. Ann. NY Acad. Sci. 994:313-318.   DOI
5 Barsh, G. S. 2003. What controls variation in human skin color? PLoS Biol. 1:e27.   DOI
6 Choe, J. H., K. Nam, S. Jung, B. Kim, H. Yun, and C. Jo. 2010. Differences in the quality characteristics between commercial Korean native chickens and broilers. Korean J. Food Sci. Anim. Resour. 30:13-19.   DOI
7 Choi, N. R., D. W. Seo, S. B. Jemaa, H. Sultana, K. N .Heo, C. Jo, and J. H. Lee. 2015. Discrimination of the commercial Korean native chicken population using microsatellite markers. J. Anim. Sci. Technol. 57:5.   DOI
8 Chung, R. H., E. R. Hauser, and E. R. Martin. 2007. Interpretation of simultaneous linkage and family-based association tests in genome screens. Genet. Epidemiol. 31:134-142.   DOI
9 Dorshorst, B., A. M. Molin, C. J. Rubin, A. M. Johansson, L. Stromstedt, M. H. Pham, C. F. Chen, F. Hallbook, C. Ashwell, and L. Andersson. 2011. A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genet. 7:e1002412.   DOI
10 Dorshorst, B., R. Okimoto, and C. Ashwell. 2010. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. J. Hered. 101:339-350.   DOI
11 Eriksson, J., G. Larson, U. Gunnarsson, B. Bed'hom, M. Tixier-Boichard, L. Stromstedt, D. Wright, A. Jungerius, A. Vereijken, and E. Randi et al. 2008. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 4:e1000010.   DOI
12 Havill, L. M., T. D. Dyer, D. K. Richardson, M. C. Mahaney, and J. Blangero. 2005. The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification. BMC Genet. 6:S91.   DOI
13 Green, P., K. Falls, and S. Crooks. 1990. Documentation for CRIMAP, version 2.4. Washington University School of Medicine, St.Louis, MO, USA.
14 Gilmour, A. R., R. Thompson, and B. R. Cullis. 1995. Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440-1450.   DOI
15 Groenen, M. A. M., H. H. Cheng, N. Bumstead, B. F. Benkel, W. E. Briles, T. Burke, D. W. Burt, L. B. Crittenden, J. Dodgson, and J. Hillel et al. 2000. A consensus linkage map of the chicken genome. Genome Res. 10:137-147.
16 Hennessy A., C. Oh, B. Diffey, K. Wakamatsu, S. Ito, and J. Rees. 2005. Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation. Pigment Cell Res. 18:220-223.   DOI
17 Jeon, H. J., J. H. Choe, Y. K. Jung, Z. A. Kruk, D. G. Lim, and C. Jo. 2010. Comparison of the chemical composition, textural characteristics, and sensory properties of North and South Korean native chickens and commercial broilers. Korean J. Food Sci. Anim. Resour. 30:171-178.   DOI
18 Jin, S., H. B. Park, D. W. Seo, M. Cahyadi, N. R. Choi, K. N. Heo, C. Jo, and J. H. Lee. 2014. Association of MC1R genotypes with shank color traits in Korean native chicken. Livest. Sci. 170:1-7.   DOI
19 Jung, Y., H. J. Jeon, S. Jung, J. H. Choe, J. H. Lee, K. N. Heo, B. S Kang, and C. Jo. 2011. Comparison of quality traits of thigh meat from Korean native chickens and broilers. Korean J. Food Sci. Anim. Resour. 31:684-692.   DOI
20 Kerje, S., J. Lind, K. Schutz, P. Jensen, and L. Andersson. 2003. Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Anim. Genet. 34:241-248.   DOI
21 Kiefer, C., S. Hessel, J. M. Lampert, K. Vogt, M. O. Lederer, D. E. Breithaupt, and von J. Lintig. 2001. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J. Biol. Chem. 276:14110-14116.   DOI
22 Klungland, H. and D. I. Vage. 2003. Pigmentary switches in domestic animal species. Ann. NY Acad. Sci. 994:331-338.   DOI
23 Knox, C. W. 1935. The inheritance of shank color in chickens. Genetics 20:529-544.
24 Ling, M. K., M. C. Lagerstrom, R. Fredriksson, R. Okimoto, N. I. Mundy, S. Takeuchi, and H. B. Schioth . 2003. Association of feather colour with constitutively active melanocortin 1 receptors in chicken. Eur. J. Biochem. 270:1441-1449.   DOI
25 McGowan, K. A., J. Z. Li, C. Y. Park, V. Beaudry, H. K. Tabor, A. J. Sabnis, W. Zhang, H. Fuchs, M. H. de Angelis, R. M. Myers, L. D. Attardi, and G. S. Barsh. 2008. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet. 40:963-970.   DOI
26 Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic. Acids Res. 16:1215.   DOI
27 Piepho, H. P. 2001. A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157:425-432.
28 Rees, J. L. 2003. Genetics of hair and skin color. Annu. Rev. Genet. 37:67-90.   DOI
29 Sirri, F., M. Petracci, M. Bianchi, and A. Meluzzi. 2010. Survey of skin pigmentation of yellow-skinned broiler chickens. Poult. Sci. 89:1556-1561.   DOI
30 Seo, D. W., J. D. Oh, S. Jin, K. D. Song, H. B. Park, K. N. Heo, Y. Shin, M. Jung, J. Park, C. Jo, H. K. Lee, and J. H. Lee. 2015. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data. Mol. Biol. Rep. 42:471-477.   DOI
31 Siwek, M., D. Wragg, A. Slawinska, M. Malek, O. Hanotte, and J. Mwacharo. 2013. Insights into the genetic history of Greenlegged Partridgelike fowl: mtDNA and genome-wide SNP analysis. Anim. Genet. 44:522-532.   DOI
32 Smyth, Jr. J. R. 1990. Genetics of plumage, skin and eye pigmentation in chicken. In: Poultry Breeding and Genetics (Ed. R. D. Crawford) Elsevier, Amsterdam, The Netherlands.
33 Tian, X., J. Jiang, R. Fan, H. Wang, X. Meng, X. He, J. He, H. Li, J. Geng, X. Yu, Y. Song, D. Zhang, J. Yao, G. W. Smith, and C. Dong. 2012. Identification and characterization of microRNAs in white and brown alpaca skin. BMC Genomics 13:555.   DOI