Browse > Article
http://dx.doi.org/10.5713/ajas.16.0130

Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos  

Zhang, Xuemei (Life Science and Technology, Xinjiang University)
Wang, Liqin (Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang)
Wu, Yangsheng (Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang)
Li, Wenrong (Life Science and Technology, Xinjiang University)
An, Jing (Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Animal, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang)
Zhang, Fuchun (Life Science and Technology, Xinjiang University)
Liu, Mingjun (Life Science and Technology, Xinjiang University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.10, 2016 , pp. 1500-1507 More about this Journal
Abstract
Myostatin (MSTN) can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause "double-muscling" trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN) which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.
Keywords
Myostatin; Zinc-finger Nucleases; Knockout; Sheep;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bibikova, M., M. Golic, K. G. Golic, and D. Carroll. 2002. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169-1175.
2 Boman, I. A., G. Klemetsdal, T. Blichfeldt, O. Nafstad, and D. I. Vage. 2009. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries). Anim. Genet. 40:418-422.   DOI
3 Chu, X., Z. Zhang, J. Yabut, S. Horwitz, J. Levorse, X. Q. Li, L. Zhu, H. Lederman, R. Ortiga, J. Strauss, X. Li, K. A. Owens, J. Dragovic, T. Vogt, R. Evers, and M. K. Shin. 2012. Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol. Pharmacol. 81:220-227.   DOI
4 Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibe, J. Bouix, F. Caiment, J. M. Elsen, F. Eychenne, C. Larzul, E. Laville, F. Meish, D. Milenkovic, J. Tobin, C. Charlier, and M. Georges. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38:813-818.   DOI
5 Cui, X., D. Ji, D. A. Fisher, Y. Wu, D. M. Briner, and E. J. Weinstein. 2011. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat. Biotechnol. 29:64-67.   DOI
6 Doyon, Y., J. M. McCammon, J. C. Miller, F. Faraji, C. Ngo, G. E. Katibah, R. Amora, T. D. Hocking, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, and S. L. Amacher. 2008. Heritable targeted gene disruption in zebrafish using designed zincfinger nucleases. Nat. Biotechnol. 26:702-708.   DOI
7 Flisikowska, T., I. S. Thorey, S. Offner, F. Ros, V. Lifke, B. Zeitler, O. Rottmann, A. Vincent, L. Zhang, S. Jenkins, H. Niersbach, A. J. Kind, P. D. Gregory, A. E. Schnieke, and J. Platzer. 2011. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE. 6:e21045.   DOI
8 Geurts, A. M., G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, and X. Meng, et al. 2009. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433.   DOI
9 Hauschild, J., B. Petersen, Y. Santiago, A. L. Queisser, J. W. Carnwath, A. Lucas-Hahn, L. Zhang, X. Meng, P. D. Gregory, R. Schwinzer, G. J. Cost, and H. Niemann. 2011. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 108:12013-12017.   DOI
10 Hu, L. Y., C. C. Cui, Y. J. Song, X. G. Wang, Y. P. Jin, A. H. Wang, and Y. Zhang. 2012. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA. Biotechnol. Lett. 34:1251-1255.   DOI
11 McCreath, K. J., J. Howcroft, K. H. S. Campbell, A. Colman, A. E. Schnieke, and A. J. Kind. 2000. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066-1069.   DOI
12 Kambadur, R., M. Sharma, T. P. L. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916.   DOI
13 Lai, L., D. Kolber-Simonds, K. W. Park, H. T. Cheong, J. L. Greenstein, G. S. Im, M. Samuel, A. Bonk, A. Rieke, B. N. Day, C. N. Murphy, D. B. Carter, R. J. Hawley, and R. S. Prather. 2002. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092.   DOI
14 Lloyd, A., C. L. Plaisier, D. Carroll, and G. N. Drews. 2005. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA. 102:2232-2237.   DOI
15 McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA. 94:12457-12461.   DOI
16 Meng, X., M. B. Noyes, L. J. Zhu, N. D. Lawson, and S. A. Wolfe. 2008. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol. 26:695-701.   DOI
17 Meyer, M., M. H. de Angelis, W. Wurst, and R. Kuhn. 2010. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 107:15022-15026.   DOI
18 Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh, H. G. Parker, and E. A. Ostrander. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:e79.   DOI
19 Patel, K. and H. Amthor. 2005. The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul. Disord. 15:117-126.   DOI
20 Park, S. J., H. J. Park, O. J. Koo, W. J. Choi, J. H. Moon, D. K. Kwon, J. T. Kang, S. Kim, J. Y. Choi, G. Jang, and B. C. Lee. 2012. Oxamflatin improves developmental competence of porcine somatic cell nuclear transfer embryos. Cell. Reprogram. 14:398-406.   DOI
21 Richt, J. A., P. Kasinathan, A. N. Hamir, J. Castilla, T. Sathiyaseelan, F. Vargas, J. Sathiyaseelan, H. Wu, H. Matsushita, J. Koster, S. Kato, I. Ishida, C. Soto, J. M. Robl, and Y. Kuroiwa. 2007. Production of cattle lacking prion protein. Nat. Biotechnol. 25:132-138.   DOI
22 Takasu, Y., I. Kobayashi, K. Beumer, K. Uchino, H. Sezutsu, S. Sajwan, D. Carroll, T. Tamura, and M. Zurovec. 2010. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem. Mol. Biol. 40:759-765.   DOI
23 Young, J. J., J. M. Cherone, Y. Doyon, I. Ankoudinova, F. M. Faraji, A. H. Lee, C. Ngo, D. Y. Guschin, D. E. Paschon, J. C. Miller, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, R. M. Harland, and B. Zeitler. 2011. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc. Natl. Acad. Sci. USA. 108:7052-7057.   DOI
24 Yu, S., J. Luo, Z. Song, F. Ding, Y. Dai, and N. Li. 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. 21:1638-1640.   DOI
25 Zhang, C., L. Wang, G. Ren, Z. Li, C. Ren, T. Zhang, K. Xu, and Z. Zhang. 2014. Targeted disruption of the sheep MSTN gene by engineered zinc-finger nucleases. Mol. Biol. Rep. 41:209-215.   DOI