Browse > Article
http://dx.doi.org/10.5713/ajas.14.0901

Effects of L-tryptophan, Fructan, and Casein on Reducing Ammonia, Hydrogen Sulfide, and Skatole in Fermented Swine Manure  

Sheng, Q.K. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences)
Yang, Z.J. (Shandong Meishida Agriculture and Husbandry Technology)
Zhao, H.B. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences)
Wang, X.L. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences)
Guo, J.F. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.8, 2015 , pp. 1202-1208 More about this Journal
Abstract
The effects of daily dietary Bacillus subtilis (Bs), and adding L-tryptophan, fructan, or casein to fecal fermentation broths were investigated as means to reduce the production of noxious gas during manure fermentation caused by ammonia, hydrogen sulfide ($H_2S$), and 3-methylindole (skatole). Eighty swine ($50.0{\pm}0.5kg$) were equally apportioned to an experimental group given Bs in daily feed, or a control group without Bs. After 6 weeks, fresh manure was collected from both groups for fermentation studies using a $3{\times}3$ orthogonal array, in which tryptophan, casein, and fructan were added at various concentrations. After fermentation, the ammonia, $H_2S$, L-tryptophan, skatole, and microflora were measured. In both groups, L-tryptophan was the principle additive increasing skatole production, with significant correlation (r = 0.9992). L-tryptophan had no effect on the production of ammonia, $H_2S$, or skatole in animals fed Bs. In both groups, fructan was the principle additive that reduced $H_2S$ production (r = 0.9981). Fructan and Bs significantly interacted in $H_2S$ production (p = 0.014). Casein was the principle additive affecting the concentration of ammonia, only in the control group. Casein and Bs significantly interacted in ammonia production (p = 0.039). The predominant bacteria were Bacillus spp. CWBI B1434 (26%) in the control group, and Streptococcus alactolyticus AF201899 (36%) in the experimental group. In summary, daily dietary Bs reduced ammonia production during fecal fermentation. Lessening L-tryptophan and increasing fructan in the fermentation broth reduced skatole and $H_2S$.
Keywords
Swine Manure; L-tryptophan; Fructan; Casein; Ammonia; $H_2S$; Skatole; B. subtilis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 An, C., T. Kuda, T. Yazaki, H. Takahashi, and B. Kimura. 2014. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl. Microbiol. Biotechnol. 98:2779-2787.   DOI   ScienceOn
2 Doerner, K. C., K. L. Cook, and B. P. Mason. 2009. 3-Methylindole production is regulated in Clostridium scatologenes ATCC 25775. Lett. Appl. Microbiol. 48:125-132.   DOI   ScienceOn
3 Eom, H. J., J. S. Moon, E. Y. Seo, and N. S. Han. 2009. Heterologous expression and secretion of lactobacillus amylovorus alpha-amylase in leuconostoc citreum. Biotechnol. Lett. 31:1783-1788.   DOI   ScienceOn
4 Jensen, B. 2006. Prevention of boar taint in pig production. Factors affecting the level of skatole. Acta Vet. Scand. 48(Suppl 1):S6.   DOI
5 Jeon, B. S., J. H. Kwag, Y. H. Yoo, J. O. Cha, and H. S. Park. 1996. Effects of feeding enzymes, probiotics or yucca powder on pig growth and odor-generating substances in feces. Korean J. Anim. Sci. 38:52-58.
6 Kim, H. J., J. S. Woo, O. S. Kwon, B. J. Min, K. S. Shon, J. H. Jo, Y. J. Chen, and I. H. Kim. 2005. Effects of bacillus subtilis supplementation on egg quality, blood characteristics and fecal NH3-N in laying hens. Korean J. Poult. Sci. 32:9-14.
7 Lee, S. J., N. H. Shin, J. U. Ok, H. S. Jung, G. M. Chu, J. D. Kim, I. H. Kim, and S. S. Lee. 2009. Effects of dietary synbiotics from anaerobic microflora on growth performance, noxious gas emission and fecal pathogenic bacteria population in weaning pigs. Asian Australas. J. Anim. Sci. 22:1202-1208.   DOI
8 Li, C. 2009. Effects of Dietary Fiber on Skatole Levels in Swine Body and the Underlying Regulatory Mechanisms. Ph.D Thesis, Zhejiang University, Hangzhou, China. VIII.
9 Li, F. 2011. Degradation of Skatole That Caused Boar Taint by Lactic Acid Bacteria. Ph.D Thesis, Southwest University, Chongqing, China. 141-142.
10 Lin, R. S., M. W. Orcutt, R. D. Allrich, and M. D. Judge .1992. Effect of dietary crude protein content on skatole concentration in boar serum. Meat Sci. 31:473-479.   DOI   ScienceOn
11 Lundstroma, K., B. Malmforsb, S. Sternb, L. Rydhmerb, L. Eliasson-Sellingc, A. B. Mortensend, and H. P. Mortensend. 1994. Skatole levels in pigs selected for high lean tissue growth rate on different dietary protein levels. Livest. Prod. Sci. 38:125-132.   DOI   ScienceOn
12 Martinez, R. C. R., H. R. Cardarelli, W. Borst, S. Albrecht, H. Schols, O. P. Gutierrez, A. J. H. Maathuis, B. D. G. de Melo Franco, E. C. P. De Martinis, E. G. Zoetendal, K. Venema, S. M. I. Saad, and H. Smidt. 2013. Effect of galactooligosaccharides and bifidobacterium animalisBb-12 on growth of lactobacillus amylovorus DSM 16698, microbial community structure, and metabolite production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol. Ecol. 84:110-123.   DOI   ScienceOn
13 Nowak, A. and Z. Libudzisz. 2009. Ability of probiotic lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur. J. Nutr. 48:419-427.   DOI
14 Powers, W. J., S. B. Zamzow, and B. J. Kerr. 2007. Reduced crude protein effects on aerial emissions from swine. Appl. Eng. Agric. 23:539-546.   DOI
15 Rinkinen, M. L., J. M. K. Koort, A. C. Ouwehand, E. Westermarck, and K. J. Bjorkroth. 2004. Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiol. Lett. 230:35-39.   DOI   ScienceOn
16 Vhile, S. G., N. P. Kjos, H. Sorum, and M. O verland. 2012. Feeding jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal 6:807-814.   DOI   ScienceOn
17 Salazar, N., E. M. Dewulf, A. M. Neyrinck, L. B. Bindels, P. D. Cani, J. Mahillon, W. M. de Vos, J. P. Thissen, M. Gueimonde, C. G. de Los Reyes-Gavilan, and N. M. Delzenne. 2014. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin. Nutr. http://dx.doi.org/10.1016/j.clnu.2014.06.001   DOI   ScienceOn
18 Su, Y., W. Yao, and W.Y. Zhu. 2006. Changes of bacterial flora from hindguts of piglets after oral administration of lactobacillus amylovorus S1 as a probiotic strain. Wei Sheng Wu Xue Bao. 46:961-966.
19 Suarez-Estrella, F., M. M. Jurado, M. C. Vargas-Garcia, M. J. Lopez, and J. Moreno. 2013. Isolation of bio-protective microbial agents from eco-composts. Biol. Control 67:66-74.   DOI   ScienceOn
20 Wesoly, R. and U. Weiler. 2012. Nutritional influences on skatole formation and skatole metabolism in the pig. Animals 2:221-242.   DOI
21 Whitehead, T. R., N. P. Price, H. L. Drake, and M. A. Cotta. 2008. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen clostridium drakei, Clostridium scatologenes, and swine manure. Appl. Environ. Microbiol. 74:1950-1953.   DOI   ScienceOn
22 Wutzke, K. D., M. Lotz, and C. Zipprich. 2010. The effect of preand probiotics on the colonic ammonia metabolism in humans as measured by lactose-$[^{15}N_2]$ureide. Eur. J. Clin. Nutr. 64:1215-1221.   DOI   ScienceOn
23 Yumoto, I., K. Hirota, S. Yamaga, Y. Nodasaka, T. Kawasaki, H. Matsuyama, and K. Nakajima. 2004. Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int. J. Syst. Evol. Microbiol. 54:1997-2001.   DOI   ScienceOn
24 Xu, Z. R., C. H. Hu, and M. Q. Wang. 2002. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J. Gen. Appl. Microbiol. 48:83-89.   DOI   ScienceOn
25 Yokoyama, M. T., and J. R. Carlson. 1974. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro. Appl. Environ. Microbiol. 27:540-548.
26 Yokoyama, M. T., K. A. Johnson, and J. R. Carlson. 1983. Factors influencing the production of p-cresol and skatole by lactobacillus isolated from the rumen and pig feces. Proceedings of XVII Conference on Rumen Function, Chicag, IL, USA. 17:19-20.
27 Zhang, Q., M. Hu, R. Zhu, X. Ren, Y. Wu, H. Wang, Y. Liu, and S. Wang. 2009. Microbial properties and application of superior bacteria in deep-litter ecosystem for piggery. Shandong Agricultural Sciences (China). 4:99-105.
28 Zhang, Z., Y. Wu, W. Cheng, and R. Wu. 2000. Single strand conformation polymorphism analysis of K-ras gene mutations by capillary electrophoresis with laser-induced fluorescence (LIF) detector. Clin. Chim. Acta. 301:205-211.   DOI   ScienceOn
29 Zhao, P. Y., J. P. Wang, and I. H. Kim. 2013. Evaluation of dietary fructan supplementation on growth performance, nutrient digestibility, meat quality, fecal microbial flora, and fecal noxious gas emission in finishing pigs. J. Anim. Sci. 91:5280-5286.   DOI   ScienceOn