Browse > Article
http://dx.doi.org/10.5713/ajas.14.0269

Ex vivo Digestion of Milk from Red Chittagong Cattle Focusing Proteolysis and Lipolysis  

Islam, Mohammad Ashiqul (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences)
Ekeberg, Dag (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences)
Rukke, Elling-Olav (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences)
Vegarud, Gerd Elisabeth (Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.4, 2015 , pp. 559-567 More about this Journal
Abstract
Ex vivo digestion of proteins and fat in Red Chittagong Cattle milk from Bangladesh was carried out using human gastrointestinal enzymes. This was done to investigate the protein digestion in this bovine breed's milk with an especial focus on the degradation of the allergenic milk proteins; ${\alpha}_{s1}$-casein and ${\beta}$-lactoglobulin and also to record the generation of peptides. Lipolysis of the milk fat and release of fatty acids were also under consideration. After 40 min of gastric digestion, all the ${\alpha}_s$-caseins were digested completely while ${\beta}$-lactoglobulin remained intact. During 120 min of duodenal digestion ${\beta}$-lactoglobulin was reduced, however, still some intact ${\beta}$-lactoglobulin was observed. The highest number of peptides was identified from ${\beta}$-casein and almost all the peptides from ${\kappa}$-casein and ${\beta}$-lactoglobulin were identified from the gastric and duodenal samples, respectively. No lipolysis was observed in the gastric phase of digestion. After 120 min of duodenal digestion, milk fat showed 48% lipolysis. Medium (C10:0 to C16:0) and long (${\geq}C17:0$) chain fatty acids showed 6% to 19% less lipolysis than the short (C6:0 to C8:0) chain fatty acids. Among the unsaturated fatty acids $C18:1{\sum}others$ showed highest lipolysis (81%) which was more than three times of $C18:2{\sum}all$ and all other unsaturated fatty acids showed lipolysis ranging from 32% to 38%. The overall digestion of Bangladeshi Red Cattle milk was more or less similar to the digestion of Nordic bovine milk (Norwegian Red Cattle).
Keywords
Gastric Digestion; Duodenal Digestion; ${\alpha}_{s1}$-Casein; ${\beta}$-Lactoglobulin; Peptide; Fatty Acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Islam, M. A., M. K. Alam, M. N. Islam, M. A. S. Khan, D. Ekeberg, E. O. Rukke, and G. E. Vegarud. 2014a. Principal milk components in buffalo, holstein cross, indigenous cattle and Red Chittagong Cattle from Bangladesh. Asian Australas. J. Anim. Sci. 27:886-897.   DOI   ScienceOn
2 Islam, M. A., D. Ekeberg, E. O. Rukke, and G. E. Vegarud. 2014b. Ex vivo digestion of omega-3 enriched buffalo skimmed milk. J. Func. Foods. (In press). doi: 10.1016/j.jff.2014.08.016.   DOI   ScienceOn
3 Jensen, R. G. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85:295-350.   DOI   ScienceOn
4 Kopf-Bolanz, K. A., F. Schwander, M. Gijs, G. Vergeres, R. Portmann, and L. Egger. 2012. Validation of an in vitro digestive system for studying macronutrient decomposition in humans. J. Nutr. 142:245-250.   DOI   ScienceOn
5 Maansson, H. L. 2008. Fatty acids in bovine milk fat. Food Nutr. Res. 10.3402/fnr.v52i0.1821.   DOI   ScienceOn
6 Medhammar, E., R. Wijesinha-Bettoni, B. Stadlmayr, E. Nilsson, U. R. Charrondiere, and B. Burlingame. 2012. Composition of milk from minor dairy animals and buffalo breeds: a biodiversity perspective. J. Sci. Food Agric. 92:445-474.   DOI   ScienceOn
7 Miled, N., S. Canaan, L. Dupuis, A. Roussel, M. Riviere, F. Carriere, A. de Caro, C. Cambillau, and R. Verger. 2000. Digestive lipases: From three-dimensional structure to physiology. Biochimie 82:973-986.   DOI   ScienceOn
8 Miranda, G., M.-F. Mahe, C. Leroux, and P. Martin. 2004. Proteomic tools to characterize the protein fraction of Equidae milk. Proteomics 4:2496-2509.   DOI   ScienceOn
9 Mu, H. and C.-E. Hoy. 2004. The digestion of dietary triacylglycerols. Prog. Lipid Res. 43:105-133.   DOI   ScienceOn
10 Pafumi, Y., D. Lairon, P. L. de la Porte, C. Juhel, J. Storch, M. Hamosh, and M. Armand. 2002. Mechanisms of Inhibition of Triacylglycerol Hydrolysis by Human Gastric Lipase. J. Biol. Chem. 277:28070-28079.   DOI   ScienceOn
11 Parodi, P. W. 1979. Stereospecific distribution of fatty acids in bovine milk fat triglycerides. J. Dairy Res. 46:75-81.   DOI
12 Rogalska, E., S. Ransac, and R. Verger. 1990. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. J. Biol. Chem. 265:20271-20276.
13 Tidona, F., A. Criscione, T. G. Devold, S. Bordonaro, D. Marletta, and G. E.Vegarud. 2014. Protein composition and micelle size of donkey milk with different protein patterns: Effects on digestibility. Int. Dairy J. 35:57-62.   DOI   ScienceOn
14 Ulleberg, E. K. 2011. In vitro Digestion of Caprine Whey Proteins by Human Gastrointestinal Juices: Effect of Whey Hydrolysates and Peptides on In Vitro Cell Responses. PhD thesis, Norwegian University of Life Sciences, Aas, Norway.
15 Ulleberg, E. K., I. Comi, H. Holm, E. B. Herud, M. Jacobsen, and G. E. Vegarud. 2011. Human gastrointestinal juices intended for use in in vitro digestion models. Food Dig. 2:52-61.   DOI   ScienceOn
16 Ye, A., J. Cui, and H. Singh. 2011. Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk. J. Dairy Sci. 94:2762-2770.   DOI   ScienceOn
17 Angers, P., E. Tousignant, A. Boudreau, and J. Arul. 1998. Regiospecific analysis of fractions of bovine milk fat triacylglycerols with the same partition number. Lipids 33:1195-1201.   DOI   ScienceOn
18 Abd El-Salam, M. H. and S. El-Shibiny. 2011. A comprehensive review on the composition and properties of buffalo milk. Dairy Sci. Technol. 91:663-699.   DOI
19 Almaas, H., A.-L. Cases, T. G. Devold, H. Holm, T. Langsrud, L. Aabakken, T. Aadnoey, and G. E. Vegarud. 2006. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int. Dairy J. 16:961-968.   DOI   ScienceOn
20 Almaas, H., E. Eriksen, C. Sekse, I. Comi, R. Flengsrud, H. Holm, E. Jensen, M. Jacobsen, T. Langsrud, and G. E. Vegarud. 2011. Antibacterial peptides derived from caprine whey proteins, by digestion with human gastrointestinal juice. Br. J. Nutr. 106:896-905.   DOI   ScienceOn
21 Armand, M. 2007. Lipases and lipolysis in the human digestive tract: where do we stand? Curr. Opin. Clin. Nutr. Metab. Care. 10:156-164.   DOI   ScienceOn
22 Blasi, F., D. Montesano, M. De Angelis, A. Maurizi, F. Ventura, L. Cossignani, M. S. Simonetti, and P. Damiani. 2008. Results of stereospecific analysis of triacylglycerol fraction from donkey, cow, ewe, goat and buffalo milk. J. Food Compost. Anal. 21:1-7.   DOI   ScienceOn
23 Carriere, F., J. Barrowman, R. Verger, and R. Laugier. 1993. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876-888.   DOI
24 Carriere, F., Y. Gargouri, H. Moreau, S. Ransac, E. Rogalska, and R. Verger. 1994. Gastric lipases: cellular, biochemical and kinetic aspects. In: Lipases: Their Structure, Biochemistry and Application (Eds. P. Woolley and S. B. Petersen). Cambridge University Press, New York, USA. pp. 181-205.
25 Gallier, S., J. Cui, T. D. Olson, S. M. Rutherfurd, A. Ye, P. J. Moughan, and H. Singh. 2013. In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chem. 141:3273-3281.
26 Devle, H., E. K. Ulleberg, C. F. Naess-Andresen, E.-O. Rukke, G. E. Vegarud, and D. Ekeberg. 2014. Reciprocal interacting effects of proteins and lipids during ex vivo digestion of bovine milk. Int. Dairy J. 36:6-13.   DOI   ScienceOn
27 Furlund, C. B., E. K. Ulleberg, T. G. Devold, R. Flengsrud, M. Jacobsen, C. Sekse, H. Holm, and G. E. Vegarud 2013. Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes. J. Dairy Sci. 96:75-88.   DOI   ScienceOn
28 Gallier, S., A. Ye, and H. Singh. 2012. Structural changes of bovine milk fat globules during in vitro digestion. J. Dairy Sci. 95:3579-3592.   DOI   ScienceOn
29 Gass, J., H. Vora, A. F. Hofmann, G. M. Gray, and C. Khosla. 2007. Enhancement of dietary protein digestion by conjugated bile acids. Gastroenterology 133:16-23.   DOI   ScienceOn
30 Haug, A., A. T. Hostmark, and O. M. Harstad. 2007. Bovine milk in human nutrition-a review. Lipids Health Dis. 6:25.   DOI   ScienceOn
31 Hur, S. J., B. O. Lim, E. A. Decker, and D. J. McClements. 2011. In vitro human digestion models for food applications. Food Chem. 125:1-12.   DOI   ScienceOn
32 Inglingstad, R. A., T. G. Devold, E. K. Eriksen, H. Holm, M. Jacobsen, K. H. Liland, E. O. Rukke, and G. E. Vegarud. 2010. Comparison of the digestion of caseins and whey proteins in equine, bovine, caprine and human milks by human gastrointestinal enzymes. Dairy Sci. Technol. 90:549-563.   DOI