Browse > Article
http://dx.doi.org/10.5713/ajas.14.0463

Effect of Dietary Marine Microalgae (Schizochytrium) Powder on Egg Production, Blood Lipid Profiles, Egg Quality, and Fatty Acid Composition of Egg Yolk in Layers  

Park, J.H. (Department of Animal Resource and Science, Dankook University)
Upadhaya, S.D. (Department of Animal Resource and Science, Dankook University)
Kim, I.H. (Department of Animal Resource and Science, Dankook University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.3, 2015 , pp. 391-397 More about this Journal
Abstract
Two hundred and sixteen Institut de S$\acute{e}$lection Animale (ISA) brown layers (40 wks of age) were studied for 6 wks to examine the effect of microalgae powder (MAP) on egg production, egg quality, blood lipid profile, and fatty acid concentration of egg yolk. Dietary treatments were as follows: i) CON (basal diet), ii) 0.5% MAP (CON+0.5% Schizochytrium powder), and iii) 1.0% MAP (CON+1.0% Schizochytrium powder). From 44 to 46 wks, egg production was higher in 1.0% MAP treatment than in control treatment (linear, p = 0.034); however, there was no difference on the egg production from 40 to 43 wks (p>0.05). Serum triglyceride and total cholesterol were significantly reduced in the groups fed with MAP, compared to those in groups fed with control diets (Quadratic, p = 0.034 and p = 0.039, respectively). Inclusion of 0.5% MAP in the diet of layers improved egg yolk color, compared with hens fed with basal diet at 46 wks (quadratic, p = 0.044). Eggshell thickness was linearly increased in MAP-fed treatments at 46th wk (p<0.05). Concentration of yolk docosahexaenoic acid (DHA; C22:6n-3) was increased in treatment groups fed with MAP (linear, p<0.05). The n-6 fatty acids, n-6/n-3 fatty acid, and unsaturated fatty acid/saturated fatty acid were decreased in treatment groups fed with MAP (linear, p<0.05). These results suggest that MAP improved the egg production and egg quality, and may affect serum lipid metabolites in the layers. In addition, MAP increases yolk DHA levels, and deceases n-6/n-3 fatty acid ratio.
Keywords
Egg Production; Fatty Acid; Laying Hen; Microalgae; Schizochytrium;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gerster, H. 1998. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 68:159-173.
2 Hargis, P. S., M. E. Van Elswyk, and B. M. Hargis. 1991. Dietary modification of yolk lipid with menhaden oil. Poult. Sci. 70:874-883.   DOI
3 Hata, Y., K. Nakajima, J. Uchida, H. Hidaka, and T. Nakano. 2002. Clinical effects of brown seaweed Undaria pinnatifida (wakame) on blood pressure in hypertensive subjects. J. Clin. Biochem. Nutr. 30:43-53.
4 Herber, S. M. and M. E. Van Elswyk. 1996. Dietary marine algae promotes efficient deposition of n-3 fatty acids for the production of enriched shell eggs. Poult. Sci. 75:1501-1507.   DOI
5 Herber, S. M. and M. E. Van Elswyk. 1998. Dietary marine algae maintains egg consumer acceptability while enhancing yolk color. Poult. Sci. 77:493-496.   DOI
6 Hibbeln, J. R., L. R. G. Nieminen, T. L. Blasbalg, J. A. Riggs, and W. E. M. Lands. 2006. Healthy intakes of n-3 and n-6 fatty acids: Estimations considering worldwide diversity. Am. J. Clin. Nutr. 83:1483S-1493S.
7 Hirahashi, T., M. Matsumoto, K. Hazeki, Y. Saeki, M. Ui, and T. Seya. 2002. Activation of the human innate immune system by Spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int. Immunopharmacol. 2:423-434.   DOI   ScienceOn
8 Holub, B. J. 2009. Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins Leukot. Essent. Fatty Acids 81:199-204.   DOI   ScienceOn
9 Huang, Z. B., R. G. Ackman, W. M. N. Ratnayake, and F. G. Proudfoot. 1990. Effect of dietary fish oil on n-3 fatty acid levels in chicken eggs and thigh flesh. J. Agric. Food Chem. 38:743-747.   DOI
10 Janczyk, P., B. Halle, and B. Souffrant. 2009. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult. Sci. 88:2324-2332.   DOI   ScienceOn
11 Jimenez-Escrig, A., I. Jimenez-Jimenez, R. Pulido, and F. Saura-Calixto. 2001. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 81:530-534.   DOI   ScienceOn
12 Kim, Y. J., K. W. Lee, S. Lee, H. Kim, and H. J. Lee. 2003. The production of high-purity conjugated linoleic acid (CLA) using two-step urea-inclusion crystallization and hydrophilic arginine-CLA complex. J. Food Sci. 68:1948-1951.   DOI   ScienceOn
13 Kotrbacek, V., M. Skrivan, J. Kopecky, O. Penkava, P. Hudeckova, I. Uhrikova, and J. Doubek. 2013. Retention of carotenoids in egg yolks of laying hens supplemented with heterotrophic Chlorella. Czech J. Anim. Sci. 58:193-200.
14 Lahaye, M. and D. Jegou. 1993. Chemical and physical-chemical characteristics of dietary fibers from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J. Appl. Physiol. 5:195-200.
15 Lemahieu, C., C. Bruneel, R. Termote-Verhalle, K. Muylaert, J. Buyse, and I. Foubert. 2013. Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem. 14:4051-4059.
16 Lum, K. K., J. Kim, and X. G. Lei. 2013. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 4:53.   DOI   ScienceOn
17 Mazalli, M. R., D. E. Faria, D. Salvador, and D. T. Ito. 2004. A Comparison of the feeding value of different sources of fats for laying hens: 1. Performance characteristics. J. Appl. Poult. Res. 13:274-279.   DOI
18 Becker, W. 2004. Microalgae in human and animal nutrition. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Ed. A. Richmond). Blackwell, Oxford, UK. pp. 312-351.
19 Aki, T., K. Hachida, M. Yoshinaga, Y. Katai, T. Yamasaki, S. Kawamoto, T. Kakizono, T. Yamaoka, S. Shigeta, O. Suzuki, and K. Ono. 2003. Thraustochytrid as a potential source of carotenoids. J. Am. Oil. Chem. Soc. 80:789-794.   DOI   ScienceOn
20 Ara, J., V. Sultana, R. Qasim, and V. U. Ahmad. 2002. Hypolipidaemic activity of seaweed from Karachi coast. Phytother. Res.16:479-483.   DOI   ScienceOn
21 Chen, J., Y. Jiang, K. Y. Ma, F. Chen, and Z. Y. Chen. 2011. Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and HMG-CoA reductase. J. Agric. Food Chem. 59:6790-6797.   DOI   ScienceOn
22 Chin, H. J., T. F. Shen, H. P. Su, and S. T. Ding. 2006. Schizochytrium limacinum SR-21 as a source of docosahexaenoic acid: optimal growth and use as a dietary supplement for laying hens. Aust. J. Agric. Res. 57:13-20.   DOI   ScienceOn
23 Dvir, I., A. H. Stark, R. Chayoth, Z. Madar, and S. M. Arad. 2009. Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1:156-167.   DOI
24 Gatrell, S., K. Lum, J. Kim, and X. G. Lei. 2014. Nonruminant Nutrition Symposium: Potential of defatted microalgae from the biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. J. Anim. Sci. 92:1306-1314.   DOI   ScienceOn
25 Shin, D., G. Kakani, A. Karimi, Y. M. Cho, S. W. Kim, Y. G. Ko, K. S. Shim, and J. H. Park. 2011. Influence of dietary conjugated linoleic acid and its combination with flaxseed oil or fish oil on saturated fatty acid and n-3 to n-6 fatty acid ratio in broiler chicken meat. Asian Australas. J. Anim. Sci. 24:1249-1255.   DOI   ScienceOn
26 NRC. 1994. Nutrient Requirements of Poultry. 9th ed, National Academy Press. Washington, DC, USA.
27 Sardi, L., G. Martelli, L. Lambertini, P. Parisini, and A. Mordenti. 2006. Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livest. Sci. 103:95-103.   DOI   ScienceOn
28 SAS. 2002. SAS User's Guide: Statistics, Version 9.0. SAS Inst. Inc., Cary, NC, USA.
29 Simopoulos, A. P. 2003. Importance of the ratio of omega-6/omega-3 essential fatty acids: Evolutionary aspects. World Rev. Nutr. Diet. 92:171-174.
30 Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101:87-96.   DOI   ScienceOn
31 Stamey, J. A., D. M. Shepherd, M. J. de Veth, and B. A. Corl. 2012. Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle. J. Dairy Sci. 95:5269-5275.   DOI   ScienceOn
32 Stein, J. H., C. M. Carlsson, K. Papcke-Benson, J. A. Einerson, P. E. McBride, and D. A. Wiebe. 2002. Inaccuracy of lipid measurements with the portable Cholestech L.D.X analyzer in patients with hypercholesterolemia. Clin. Chem. 48:284-290.
33 Trentacoste, E. M., R. P. Shrestha, S. R. Smith, C. Gle, A. C. Hartmann, M. Hildebrand, and W. H. Gerwick. 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. 110:19748-19753.   DOI   ScienceOn
34 Zheng, L., S. T. Oh, J. Y. Jeon, B. H. Moon, H. S. Kwon, S. U. Lim, B. K. An, and C. W. Kang. 2012. The dietary effects of fermented Chlorella vulgaris (CBT$^{(R)}$ ) on production performance, liver lipids and intestinal microflora in laying hens. Asian Australas. J. Anim. Sci. 25:261-266.
35 Werman, M. J., A. Sukenik, and S. Mokady. 2003. Effects of the marine unicellular alga Nannochloropsis sp. to reduce the plasma and liver cholesterol levels in male rats fed on diets with cholesterol. Biosci. Biotechnol. Biochem. 67:2266-2268.   DOI   ScienceOn