Browse > Article
http://dx.doi.org/10.5713/ajas.14.0451

Phenotypic Characterization and Multivariate Analysis to Explain Body Conformation in Lesser Known Buffalo (Bubalus bubalis) from North India  

Vohra, V. (National Bureau of Animal Genetic Resources)
Niranjan, S.K. (National Bureau of Animal Genetic Resources)
Mishra, A.K. (National Bureau of Animal Genetic Resources)
Jamuna, V. (Dairy Cattle Breeding Division, National Dairy Research Institute)
Chopra, A. (Dairy Cattle Breeding Division, National Dairy Research Institute)
Sharma, Neelesh (Division of Veterinary Medicine, Faculty of Veterinary Science & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences & technology of Jammu)
Jeong, Dong Kee (Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.3, 2015 , pp. 311-317 More about this Journal
Abstract
Phenotypic characterization and body biometric in 13 traits (height at withers, body length, chest girth, paunch girth, ear length, tail length, length of tail up to switch, face length, face width, horn length, circumference of horn at base, distances between pin bone and hip bone) were recorded in 233 adult Gojri buffaloes from Punjab and Himachal Pradesh states of India. Traits were analysed by using varimax rotated principal component analysis (PCA) with Kaiser Normalization to explain body conformation. PCA revealed four components which explained about 70.9% of the total variation. First component described the general body conformation and explained 31.5% of total variation. It was represented by significant positive high loading of height at wither, body length, heart girth, face length and face width. The communality ranged from 0.83 (hip bone distance) to 0.45 (horn length) and unique factors ranged from 0.16 to 0.55 for all these 13 different biometric traits. Present study suggests that first principal component can be used in the evaluation and comparison of body conformation in buffaloes and thus provides an opportunity to distinguish between early and late maturing to adult, based on a small group of biometric traits to explain body conformation in adult buffaloes.
Keywords
Gojri; Buffalo; Phenotype; Characterization; Principal Component Analysis; Biometric Traits;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kaiser, H. F. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187-200.   DOI
2 Miserani, M. G., C. McManus, S. A. Santos, J. A. Silva, A. S. Mariante, U. G. P. Abreu, M. C. Mazza, and J. R. B. Sereno. 2002. Variance analysis for biometric measures of the pantanerio horses in Brazil. Arch. Zootec. 51:113-120.
3 NBAGR. 2013. Annual report of national bureau of animal genetic resources for period 2012-13. Karnal, Haryana, India 10 p.
4 Nivsarkar, A. E., P. K. Vij, and M. S. Tantia. 2000. Animal genetic resources of India: Cattle and Buffalo. Directorate of information and publications of Agriculture, ICAR, New Delhi, India.
5 Pundir, R. K., P. K. Singh, K. P. Singh, and P. S. Dangi. 2011. Factor analysis of biometric traits of Kankrej cows to explain body conformation. Asian Australas. J. Anim. Sci. 24:449-456.   DOI   ScienceOn
6 Pundir, R. K. and P. K. Singh. 2008. Status, characteristics and performance of red Kandhari cattle breed in its native tract. Indian J. Anim. Sci. 78:56-61.
7 Pundir, R. K., B. L. Pathak, and S. P. S. Ahalawat. 2007a. Characterization and Evaluation of Kankrej breed of Cattle in its native tract. Indian J. Anim. Sci. 77:323-327.
8 Pundir, R. K., P. K. Singh, B. Prakash, and S. P. S. Ahlawat. 2007c. Characterization and evaluation of Kenkatha breed in its native tract. Indian J. Anim. Sci. 77:177-180.
9 Pundir, R. K., P. K. Singh, S. N. Uppadhaya, and S. P. S. Ahlawat. 2007b. Status, characteristics and performance of Red Sindhi cattle. Indian J. Anim. Sci. 77:755-758.
10 Sadek, M. H., A. Z. Al-Aboud, and A. A. Ashmawy. 2006. Factor analysis of body measurements in Arabian horses. J. Anim. Breed. Genet. 123:369-377.   DOI   ScienceOn
11 Salako, A. E. 2006. Principal component factor analysis of the morpho structure of immature uda sheep. Int. J. Morphol. 24:571-574.
12 Shahin, K. A., A. M. Soliman, and A. E. Moukhtar. 1993. Sources of shared variability for the Egyptian buffalo body shape (conformation). Livest. Prod. Sci. 36:323-334.   DOI   ScienceOn
13 Shahin, K. A., A. M. Soliman, and A. E. Moukhtar. 1995. Sources of shared variability for the Egyptian cattle body shape (conformation). Indian J. Anim. Sci. 65:759-764.
14 Simon, D. L. and Buchenauer. 1993. Genetic Diversity of European Livestock Breeds. Wageningen. The Netherlands, Hardback, 582 p.
15 Singh, P. K., R. K. Pundir, S. P. S. Alhawat, N. S. Kumar, M. G. Govindaiah, and K. Asija. 2008. Phenotypic characterization and performance evaluation of Hallikar cattle in its native tract. Indian J. Anim. Sci. 78:211-214
16 SPSS. 2001. Statistical Package for Social Sciences. SPSS Inc., 444 Michigan Avenue, Chicago, IL, USA.
17 Tolenkhomba, T. C., N. S. Singh, and D. S. Konsam, 2013. Principal component analysis of body measurements of bulls of local cattle of Manipur, India. Indian J. Anim. Sci. 83:281-284
18 Vohra, V., S. K. Niranjan, and B. K. Joshi. 2012. Gojri: A novel migratory buffalo germplasm in Punjab and Himachal Pradesh. J. Anim. Res. 2:317-321.
19 Yakubu, A., D. M. Ogah, and K. O. Idahor. 2009. Principal component analysis of the morphstructural indices of White Fulani cattle. Trakia J. Sci. 7:67-73.
20 Ahmad, N., M. Abdullah, K. Javed, M. S. Khalid, M. E. Babbar, U. Younas, and Nasrullah. 2013. Relationship between body measurements and milk production in Nili Ravi buffaloes maintained at commercial farms in peri-urban vicinity of Lahore. Buffalo Bull. 32:792-795.
21 Biedermann, G. and F. Schmucker. 1989. Body measurements of thoroughbreds and their relationship with racing performance. Zuchtungskunde, 61:181-189 (in German with English summary).
22 Fernandez, G. 2002. Data Mining Using SAS Application. Chapman & Hall/ CRC press, USA. 367 p.
23 Brown, C. J., J. E. Brown, and W. T. Butts. 1973. Evaluating relationship among immature measures of size shape and performance of beef a bulls. II. The relationships between immature measures of size, shape and feedlot traits in young beef bulls. J. Anim. Sci. 36:1021-1031.
24 Brown, C. J., J. E. Brown, and W. T. Butts. 1974. Evaluating relationships among immature measures of size shape and performance of beef a bulls. IV Regression models for predicting postweaning performance of young Hereford and Angus bulls using preweaning measures of size and shape. J. Anim. Sci. 38:12-19.
25 DAHDF. 2007. 18th livestock census, Department of Animal Husbandry Dairying and Fisheries, Report Published. Ministry of Agriculture. Government of India, New Delhi, India.
26 FAO. 2012. Phenotypic characterization of animal genetic resources. FAO. Animal Production and Health Guidelines No. 11. Rome.
27 Gilbert, R. P., D. R. C. Bailey, and N. H. Shannon. 1993. Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71:1712-1720.
28 Harvey, W. R. 1987. Least-squares Analysis of Data with Unequal Sub-class Numbers. ARS H-4, USDA, Washington DC, USA.
29 Jakubec, V., W. Scholte, J. Jelinek, A. Scholz, and N. Zalis. 1999. Linear type trait analysis in the genetic resources of the old kladrub horse. Arch. Tierz. 42:215-224.
30 Johnson, R. A. and D. W. Wichern. 1982. Applied Multivariate Statistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, NJ, USA.