Browse > Article
http://dx.doi.org/10.5713/ajas.13.0705

Effect of High Dietary Carbohydrate on the Growth Performance, Blood Chemistry, Hepatic Enzyme Activities and Growth Hormone Gene Expression of Wuchang Bream (Megalobrama amblycephala) at Two Temperatures  

Zhou, Chuanpeng (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences)
Ge, Xianping (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences)
Liu, Bo (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences)
Xie, Jun (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences)
Chen, Ruli (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences)
Ren, Mingchun (Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.2, 2015 , pp. 207-214 More about this Journal
Abstract
The effects of high carbohydrate diet on growth, serum physiological response, and hepatic heat shock protein 70 expression in Wuchang bream were determined at $25^{\circ}C$ and $30^{\circ}C$. At each temperature, the fish fed the control diet (31% CHO) had significantly higher weight gain, specific growth rate, protein efficiency ratio and hepatic glucose-6-phosphatase activities, lower feed conversion ratio and hepatosomatic index (HSI), whole crude lipid, serum glucose, hepatic glucokinase (GK) activity than those fed the high-carbohydrate diet (47% CHO) (p<0.05). The fish reared at $25^{\circ}C$ had significantly higher whole body crude protein and ash, serum cholesterol and triglyceride, hepatic G-6-Pase activity, lower glycogen content and relative levels of hepatic growth hormone (GH) gene expression than those reared at $30^{\circ}C$ (p<0.05). Significant interaction between temperature and diet was found for HSI, condition factor, hepatic GK activity and the relative levels of hepatic GH gene expression (p<0.05).
Keywords
Megalobrama amblycephala; Dietary Carbohydrate; Temperature; Growth; Serum Parameters; Hepatic Enzymes Activities;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abdel-Tawwab, M., M. H. Ahmad, Y. A. E. Khattab, and A. M. E. Shalaby. 2010. Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture 298:267-274.   DOI   ScienceOn
2 AOAC International. 1997. Official Methods of Analysis. 16th edn. Association of Official Analytical Chemists International, Arlington, VA, USA.
3 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.   DOI   ScienceOn
4 Brett, J. R., J. E. Shelboum, and C. T. Shoop. 1969. Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J. Fish. Res. Board Can. 26: 2363-2394.   DOI
5 Cai, C. F. 2004. Study on the utilization of dietary carbohydrate by Mylopharyngodon piecus Richardson and Carassius auratus and their mechanism of metabolism. Ph.D. Thesis. Shanghai East China Normal University, Shanghai, China.
6 Clarke, A. 2004. Is there a universal temperature dependence of metabolism? Funct. Ecol. 18:252-256.   DOI   ScienceOn
7 Donaldson, E. M., U. H. M. Fagerlund, D. A. Higgs, and J. R. Mcbride. 1979. Hormonal enhancement of growth. Fish Physiol. 8:455-597.   DOI
8 Duan, C. 1998. Nutritional and developmental regulation of insulin-like growth factors in fish. J. Nutr. 128:306S-314S.
9 Han, J. C., G. Y. Liu, P. S. Mei, Y. P. Huang, D. F. Liu, and Q. W. Chen. 2010. Effects of temperature on the hematological indices and digestive enzyme activities of Crucian Carp (Carassius auratus). Journal of Hydroecology 3:87-92.
10 Enes, P., S. Panserat, S. Kaushik, and A. Oliva-Teles. 2006. Rapid metabolic adaptation in European sea bass (Dicentrarchus labrax) juveniles fed different carbohydrate sources after heat shock stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 145:73-81.   DOI   ScienceOn
11 Furuichi, M. and Y. Yone. 1980. Effect of dietary dextrin levels on growth and feed efficiency, the chemical composition of liver and dorsal muscle, and the absorption of dietary protein and dextrin in fishes. Bull. Japan. Soc. Sci. Fish. 46:225-229.   DOI
12 Hochachka, P. W. and G. N. Somero. 2002. Biochemical Adaptation: Mechanism and Processing Physiological Evolution. Oxford University Press, NewYork, NY, USA.
13 Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage, and E. L. Charnov. 2001. Effects of size and temperature on metabolic rate. Science 293:2248-2251.   DOI   ScienceOn
14 Hemre, G. I. and T. Hansen. 1998. Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon (Salmo salar), during parr-smolt transformation. Aquaculture 161:145-157.   DOI   ScienceOn
15 Hemre, G. I., T. P. Mommsen, and A. Krogdahl. 2002. Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 8:175-194.   DOI   ScienceOn
16 Jauncey, K. 1982. Carp (Cyprinus carpio L.) nutrition - A review. In: Recent Advances in Aquaculture (Eds. J. F. Muir, and R. J. Roberts). Croom Helm Ltd, London, UK. 215-263.
17 Jobling, M. 1994. Fish Bioenergetics, Fish and Fisheries Series. Chapman and Hall, London, UK. 13:213-230.
18 Ke, H. 1975. An excellent freshwater food fish, Megalobrama amblycephala, and its propagating and culturing. Acta Hydrobiol. Sin. 5:293-312.
19 Krogdahl, Å ., G. I. Hemre, and T. P. Mommsen. 2005. Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac. Nutr. 11:103-122.   DOI   ScienceOn
20 Ke, H. 1986. Cultivation of blunt snout bream (Megalobrama amblycephala) in China. Fish. Sci. Technol. Inf. 5:1-5.
21 Lall, S. P. 1991. Salmonid nutrition and feed production. In: Proceedings of the special session on salmonid aquaculture. World Aquaculture Society, Los Angeles, CA, USA. 107-123.
22 Keembiyehetty, C. N. and R. P. Wilson. 1998. Effect of water temperature on growth and nutrient utilization of sunshine bass (Morone chrysops×Morone saxatilis) fed diets containing different energy/protein ratios. Aquaculture 166:151-162.   DOI   ScienceOn
23 Kirchner, S., S. Kaushik, and S. Panserat. 2003. Effect of partial substitution of dietary protein by a single gluconeogenic dispensable amino acid on hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A 134: 337-347.   DOI   ScienceOn
24 Kumar, V., W. K. B. Khalil, U. Weiler, and K. Becker. 2013. Influences of incorporating detoxified Jatropha curcas kernel meal in common carp (Cyprinus carpio L.) diet on the expression of growth hormone- and insulin-like growth factor-1-encoding genes. J. Anim. Physiol. Anim. Nutr (Berl). 97:97-108.   DOI   ScienceOn
25 Leung, L. Y. and N. Y. S. Woo. 2012. Influence of dietary carbohydrate level on endocrine status and hepatic carbohydrate metabolism in the marine fish Sparus sarba. Fish Physiol. Biochem. 38:543-554.   DOI   ScienceOn
26 Médale, F., J. M. Poli, F. Vallée, and D. Blanc. 1999. Utilization of a carbohydrate-rich diet by common carp reared at 18 and $25^{\circ}C$. Cybium 23:139-152.
27 Panserat, S., F. Medale, J. Breque, E. Plagnes-Juan, and S. Kaushik. 2000a. A Lack of significant long-term effect of dietary carbohydrates on hepatic glucose-6-phosphatase expression in rainbow trout (Oncorhynchus mykiss). J. Nutr. Biochem. 11:22-29.   DOI   ScienceOn
28 Moreira, I. S., H. Peres, A. Couto, P. Enes, and A. Oliva-Teles. 2008. Temperature and dietary carbohydrate level effects on performance and metabolic utilization of diets in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 274:153-160.   DOI   ScienceOn
29 Meton, I., A. Caseras, F. Fernandez, and I. V. Baanante. 2004. Molecular cloning of hepatic glucose-6-phosphate catalytic subunit from gilthead sea bream (Sparus aurata): Response of its mRNA levels and glucokinase expression to refeeding and diet composition. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 138:145-153.   DOI   ScienceOn
30 Miao, L. H., B. Liu, X. P. Ge, J. Xie, C. P. Zhou, L. K. Pan, R. L. Chen, and Q. L. Zhou. 2011. Effect of high carbohydrate levels in the dietary on growth performance, immunity and transmission electron microscopy (TEM) on hepatic cell of allogynogenetic crucian carp (Carassius auratus gibelio). J. Fish. China 35:221-230.
31 Panserat, S., F. Medale, C. Blin, J. Breque, C. Vachot, E. Plagnes-Juan, E. Gomes, R. Krishnamoorthy, and S. Kaushik. 2000b. Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. Am. J. Physiol. 278: R1164-R1170.
32 Panserat, S., E. Plagnes-Juan, and S. Kaushik. 2002. Gluconeogenic enzyme gene expression is decreased by dietary carbohydrates in common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Biochim. Biophys. Acta 1579:35-42.   DOI   ScienceOn
33 Peragon, J., J. B. Barroso, L. Garcia-Salguero, M. Higuera, and J. A. Lupianez. 1999. Carbohydrates affect protein-turnover rates, growth, and nucleic acid content in the white muscle of rainbow trout (Oncorhynchus mykiss). Aquaculture 179:425-437.   DOI   ScienceOn
34 Roberts, R. J. 1989. Nutritional pathology of teleosts. In: Fish pathology (Ed. R. J. Roberts). Bailliere Tindall, London, UK. 337-362.
35 Plummer, P. 1987. Glycogen determination in animal tissues. An Introduction to Practical Biochemistry, 3rd edn. McGraw Hill Book, Maidenhead, UK. 332 p.
36 Peres, H. and A. Oliva-Teles. 1999. Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 170:337-348.   DOI   ScienceOn
37 Pérez-Sánchez, J. and P. Le Bail. 1999. Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture 177:117-128.   DOI   ScienceOn
38 Person-Le Ruyet, J., K. Mahe, N. Le Bayon, and H. Le Delliou. 2004. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 237:269-280.   DOI   ScienceOn
39 Ren, M. C., Q. H. Ai, K. S. Mai, H. M. Ma, and X. J. Wang. 2011. Effect of dietary carbohydrate level on growth performance, body composition, apparent digestibility coefficient and digestive enzyme activities of juvenile cobia, Rachycentron canadum L. Aquac. Res. 42:1467-1475.   DOI   ScienceOn
40 Shikata, T., S. Iwanaga, and S. Shimeno. 1995. Regulation of carbohydrate metabolism in fish 25. Metabolic response to acclimation temperature in carp. Fish. Sci. 61:512-516.   DOI
41 Tan, Q. S., F. Wang, S. Q. Xie, X. M. Zhu, W. Lei, and J. Z. Shen. 2009. Effect of high dietary starch levels on the growth performance, blood chemistry and body composition of gibel carp (Carassius auratus var. gibelio). Aquac. Res. 40:1011-1018.   DOI   ScienceOn
42 Tranulis, M. A., O. Dregni, B. Christophersen, A. Krogdahl, and B. Borrebaek. 1996. A glucokinase-like enzyme in the liver of Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. Biochem. Mol. Biol. 114B:35-39.
43 Tymchuk, W. E., B. Beckman, and R. H. Devlin. 2009. Altered expression of growth hormone/insulin-like growth factor I axis hormones in domesticated fish. Endocrinology 150:1809-1816.   DOI   ScienceOn
44 Yu, S. K., C. E. Olsen, and J. Marcussen. 1997. Methods for the assay of 1,5-anhydro-D-fructose and $\alpha$-1,4-glucanlyase. Carbohydr. Res. 305:73-82.   DOI   ScienceOn
45 Zhou, C. P., B. Liu, J. Xie, X. P. Ge, P. Xu, Q. L. Zhou, L. K. Pan, and R. L. Chen. 2013. Effect of dietary carbohydrate level on growth performance, blood chemistry, hepatic enzyme activity, and growth hormone gene expression in Wuchang bream (Megalobrama amblycephala). The Israeli Journal of Aquaculture - Bamidgeh, IJA_65.2013.882, 8 pages.
46 Vielma, J., J. Koskela, K. Ruohonen, I. Jokinen, and J. Kettunen. 2003. Optimal diet composition for European whitefish (Coregonus lavaretus): Carbohydrate stress and immune parameter responses. Aquaculture 225:3-16.   DOI   ScienceOn
47 Wilson, R. P. 1994. Utilization of dietary carbohydrate by fish. Aquaculture 124:67-80.   DOI   ScienceOn
48 Yang, G. H., Q. X. Dai, and L. D. Gu. 1989. Nutrition, feed formulation and high-yield aquaculture techniques of blunt snout bream (Megalobrama amblycephala). Feed Industry 1:7-10.
49 Zhou, Z., Z. Ren, H. Zeng, and B. Yao. 2008. Apparent digestibility of various feedstuffs for blunt nose black bream Megalobrama amblycephala Yih. Aquac. Nutr. 14:153-165.   DOI   ScienceOn