Browse > Article
http://dx.doi.org/10.5713/ajas.15.0286

Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers  

Li, Jiaolong (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Hou, Yongqing (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Yi, Dan (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Zhang, Jun (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Wang, Lei (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Qiu, Hongyi (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Ding, Binying (Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University)
Gong, Joshua (Guelph Food Research Centre, Agriculture and Agri-Food Canada)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.12, 2015 , pp. 1784-1793 More about this Journal
Abstract
This study was carried out to investigate the effects of tributyrin (TB) on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS). A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a $2{\times}2$ factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg) and LPS challenge (0 or $500{\mu}g/kg$ body weight [BW]). On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of $500{\mu}g/kg$ BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin-$1{\beta}$ (in the jejunum and ileum), interleukin-6 (in the duodenum and jejunum), and prostaglandin $E_2$ (in the duodenum) of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum) and inducible nitric oxide synthase (in the jejunum) were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers.
Keywords
Tributyrin; Lipopolysaccharide; Intestine; Immune Response; Broilers;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Donohoe, D. R., N. Garge, X. Zhang, W. Sun, T. M. O'Connell, M. K. Bunger, and S.J.Bultman. 2011. Themicrobiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13:517-526.   DOI
2 Feingold, K. R., Y. Wang, A. Moser, J. K. Shigenaga, and C.Grunfeld. 2008. LPS decreases fatty acid oxidation and nuclear hormone receptors in the kidney. J. Lipid Res. 49:2179-2187.   DOI
3 Fusunyan, R. D., J. J. Quinn, M. Fujimoto, R. P. MacDermott, and I. R. Sanderson. 1999. Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells through histone acetylation. Mol. Med. 5:631-640.
4 Hou, Y., K.Yao, L.Wang, B. Ding, D. Fu, Y. Liu, H. Zhu, J. Liu, Y. Li, P. Kang, Y. Yin, and G. Wu. 2011. Effects of aketoglutarate on energy status in the intestinal mucosa of weaned piglets chronically challenged with lipopolysaccharide. Br. J. Nutr. 106:357-363.   DOI
5 Hou, Y., L. Wang, B. Ding, Y. Liu, H. Zhu, J. Liu, Y. Li, X. Wu, Y. Yin, and G.Wu. 2010. Dietary $\alpha$-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39:555-564.   DOI
6 Hou, Y., L. Wang, D. Yi, B. Ding, Z. Yang, J. Li, X. Chen, Y. Qiu, and G. Wu. 2013. N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling. Amino Acids 45:513-522.   DOI
7 Hu, X. F., Y. M.Guo, J. H. Li, G. L. Yan, S. Bun, and B. Y. Huang. 2011. Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Can. J. Anim. Sci. 91:379-384.   DOI
8 Jerzsele, A., K. Szeker, R. Csizinsky, E. Gere, C. Jakab, J. J. Mallo, and P. Galfi. 2012. Efficacy of protectedsodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poult. Sci. 91:837-843.   DOI
9 Kotunia, A., J. Wolinski, D. Laubitz, M. Jurkowska, V. Romé, P. Guilloteau, and R. Zabielski. 2004. Effect of sodium butyrate on the small intestine development in neonatal pignets feed by artificial sow. J. Physiol. Pharmacol. 55(Suppl 2):59-68.
10 Leeson, S., H. Namkung, M. Antongiovanni, and E. H. Lee. 2005. Effect of butyric acid on the performanceand carcass yield of broiler chickens. Poult. Sci. 84:1418-1422.   DOI
11 Lehmann, G. L., F. I. Carreras, L. R.Soria, S. A.Gradilone, and R. A. Marinelli.2008. LPS induces the TNF-alpha-mediated downregulation of rat liver aquaporin-8: Role in sepsisassociated cholestasis. Am. J. Physiol.Gastrointest. Liver Physiol. 294:G567-G575.   DOI
12 Lu, J. J., X. T. Zou, and Y. M. Wang. 2008. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J. Anim. Feed Sci. 17:568-578.   DOI
13 Mahdavi, R. and M.Torki. 2009. Study on usage period of dietary protected butyric acid on performance, carass characteristics, serum metabolite levels and humoral immune response of broiler chickens. J. Anim. Vet. Adv. 8:1702-1709.
14 Mallo, J. J., A. Balfagon, M. I. Gracia, P. Honrubia, and M. Puyalto. 2012. Evaluation of different protections of butyric acid aiming for release in the last part of the gastrointestinal tract of piglets. J. Anim. Sci. 90(Suppl4):227-229.   DOI
15 Ogawa, H., P. Rafiee, P. J. Fisher, N. A. Johnson, M. F. Otterson, and D. G. Binion. 2003. Butyrate modulates gene and protein expression in human intestinal endothelial cells. Biochem. Biophys. Res. Commun. 309:512-519.   DOI
16 Manzanilla, E. G., M. Nofrarias, M. Anguita, M. Castillo, J. F. Perez, S. M. Martin-Orue, C. Kamel, and J.Gasa. 2006. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 84:2743-2751.   DOI
17 Namkung, H., H. Yu, J. Gong, and S. Leeson. 2011. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens. Poult. Sci. 90:2217-2222.   DOI
18 Nancey, S., J. Bienvenu, B. Coffin, F. Andre, L. Descos, and B. Flourie. 2002. Butyrate strongly inhibits in vitro stimulated release of cytokines in blood. Dig. Dis. Sci. 47:921-928.   DOI
19 Panda, A. K., S. V. Rama Rao, M. V. L. N. Raju, and G. Sunder Sunder. 2009. Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian Australas. J. Anim. Sci. 22:1026-1031.   DOI
20 Parka., J. S., M. S. Woo, S. Y. Kim, W. K. Kim, and H. S. Kim. 2005. Repression of interferon-$\gamma$-induced inducible nitric oxide synthase (iNOS) gene expression in microglia by sodium butyrate is mediated through specific inhibition of ERK signaling pathways. J. Neuroimmunol. 168:56-64.   DOI
21 Sauer, J., K. K. Richter, and B. L. Pool-Zobel. 2007. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem. 18:736-745.   DOI
22 Wu, Q. J., Y. M. Zhou, Y. N. Wu, L. L. Zhang, and T. Wang. 2013. The effects of natural and modified clinoptilolite on intestinal barrier function and immune response to LPS in broiler chickens. Vet. Immunol. Immunopathol. 153:70-76.   DOI
23 Subcommittee on Poultry Nutrition, Board on Agriculture, National Research Council. 1994. Nutrient Requirements of Poultry: Ninth Revised Edition. National Academy of Science. Washington, DC, USA.
24 Wang, W. W., S. Y. Qiao, and D. F. Li. 2009. Amino acids and gut function. Amino Acids 37:105-110.   DOI
25 Weisbrodt, N. W., T. A. Pressley, Y. F. Li, M. J. Zembowicz, S. C. Higham, A. Zembowicz, R. F. Lodato, and F. G. Moody. 1996. Decreased ileal muscle contractility and increased NOS II expression induced by lipopolysaccharide. Am. J. Physiol. 271:G454-G460.
26 Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poul. Sci. 82:1030-1036.   DOI
27 Yi, D., Y. Hou, L. Wang, B. Ding, Z. Yang, J. Li, M. Long, Y. Liu, and G. Wu. 2014. Dietary N-acetylcysteine supplementation alleviates liver injury in lipopolysaccharide-challenged piglets. Br. J. Nutr. 111:46-54.   DOI
28 Zhang, W. H., Y. Jiang, Q. F. Zhu, F. Gao, S. F. Dai, J. Chen, and G. H. Zhou. 2011. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br. Poult. Sci. 52:292-301.   DOI
29 Zhang, X., L. Zhao, F. Cao, H. Ahmad, G. Wang, and T. Wang. 2013. Effects of feeding fermented Ginkgo biloba leaves on small intestinal morphology, absorption, and immunomodulation of early lipopolysaccharide-challenged chicks. Poult. Sci. 92:119-130.   DOI
30 Zhu, H. L., L. L. Hu, Y. Q. Hou, J. Zhang, and B. Y.Ding. 2014. The effects of enzyme supplementation on performance and digestive parameters of broilers fed corn-soybean diets. Poult. Sci. 93:1704-1712.   DOI
31 Bergmeyer, H. U. 1984. Methods of Enzymatic Analysis. 3rd edn. Verlag Chemie, Weinheim, Germany.
32 Blikslager, A. T., A. J. Moeser, J. L.Gookin, S. L.Jones, and J. Odle. 2007. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 87:545-564.   DOI
33 Chung, Y. S., I. S. Song, R. H. Erickson, M. H. Sleisenger, and Y. S. Kim. 1985. Effect of growth and sodium butyrate on brush bordermembrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res. 45:2976-2982.
34 Claus, R., D. Günthner, and H. Letzguss. 2007. Effects of feeding fat-coated butyrate on mucosal morphologyand function in the small intestine of the pig. J. Anim. Physiol. Anim. Nutr. 91:312-318.   DOI
35 Czerwinski, J., O. Hojberg, S. Smulikowska, R. M. Engberg, and A. Mieczkowska. 2012. Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch. Anim. Nutr. 66:102-116.   DOI
36 Davis, R. E. 1930. The metabolism of tributyrin. J. Biol. Chem. 88:67-75.