Browse > Article
http://dx.doi.org/10.5713/ajas.15.0250

Proximate Composition, and ʟ-Carnitine and Betaine Contents in Meat from Korean Indigenous Chicken  

Jung, Samooel (Department of Animal Science and Biotechnology, Chungnam National University)
Bae, Young Sik (Department of Animal Science and Biotechnology, Chungnam National University)
Yong, Hae In (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University)
Lee, Hyun Jung (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University)
Seo, Dong Won (Department of Animal Science and Biotechnology, Chungnam National University)
Park, Hee Bok (Department of Animal Science and Biotechnology, Chungnam National University)
Lee, Jun Heon (Department of Animal Science and Biotechnology, Chungnam National University)
Jo, Cheorun (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.12, 2015 , pp. 1760-1766 More about this Journal
Abstract
This study investigated the proximate composition and $\small{L}$-carnitine and betaine content of meats from 5 lines of Korean indigenous chicken (KIC) for developing highly nutritious meat breeds with health benefits from the bioactive compounds such as $\small{L}$-carnitine and betaine in meat. In addition, the relevance of gender (male and female) and meat type (breast and thigh meat) was examined. A total of 595 F1 progeny (black [B], grey-brown [G], red-brown [R], white [W], and yellow-brown [Y]) from 70 full-sib families were used. The moisture, protein, fat, and ash contents of the meats were significantly affected by line, gender, and meat type (p<0.05). The males in line G and females in line B showed the highest protein and the lowest fat content of the meats. $\small{L}$-carnitine and betaine content showed effects of meat type, line, and gender (p<0.05). The highest $\small{L}$-carnitine content was found in breast and thigh meats from line Y in both genders. The breast meat from line G and the thigh meat from line R had the highest betaine content in males. The female breast and thigh meats showed the highest betaine content in line R. These data could be valuable for establishing selection strategies for developing highly nutritious chicken meat breeds in Korea.
Keywords
Korean Indigenous Chicken Lines; Meat; $\small{L}$-Carnitine; Betaine;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Flanagan, J. L., P. A. Simmons, J. Vehige, M. D. P. Willcox, and Q. Garrett. 2010. Role of carnitine in disease. Nutr. Metab. 7:1-14.   DOI
2 Hoppel, C. 2003. The role of carnitine in normal and altered fatty acid metabolism. Am. J. Kidney Dis. 41:S4-S12.
3 Jang, A., D. Kim, K. S. Sung, S. Jung, H. J. Kim, and C. Jo. 2014. The effect of dietary $\alpha$-lipoic acid, betaine, L-carnitine, and swimming on the obesity of mice induced by a high-fat diet. Food Funct. 5:1966-1974.   DOI
4 Jayasena, D. D., S. Jung, H. J. Kim, Y. S. Bae, H. I. Yong, J. H. Lee, J. G. Kim, and C. Jo. 2013. Comparison of quality traits of meat from Korean native chickens and broilers used in two different traditional Korean cuisines. Asian Australas. J. Anim. Sci. 26:1038-1046.   DOI
5 Jayasena, D. D., S. Jung, Y. S. Bae, H. B. Park, J. H. Lee, and C. Jo. 2015. Comparison of the amounts of endogenous bioactive compounds in raw and cooked meats from broilers and indigenous chickens. J. Food Compost. Anal. 37:20-24.   DOI
6 Jayasena, D. D., S. Jung, Y. S. Bae, S. H. Kim, S. K. Lee, J. H. Lee, and C. Jo. 2014. Changes in endogenous bioactive compounds of Korean native chicken meat at different ages and during cooking. Poult. Sci. 93:1842-1849.   DOI
7 Jung, S., K. H. Lee, K. C. Nam, H. J. Jeon, J. H. Choe, and C. Jo. 2014. Quality assessment of the breast meat from WoorimatdagTM and broilers. Korean J. Food Sci. An. 34:707-714.
8 Jung, S., Y. S. Bae, H. J. Kim, D. D. Jayasena, J. H. Lee, H. B. Park, K. N. Heo, and C. Jo. 2013. Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci. 92:3275-3282.   DOI
9 Abuzaid, A. A. 2010. Variation of carnitine concentrations in Angus beef. M.S. Thesis, Iowa State University, Ames, IA, USA.
10 Jung, Y., H. J. Jeon, S. Jung, J. H. Choe, J. H. Lee, K. N. Heo, B. S. Kang, and C. Jo. 2011. Comparison of quality traits of thigh meat from Korean native chickens and broilers. Korean J. Food Sci. An. 31:684-692.   DOI
11 Lee, H. J., D. D. Jayasena, S. H. Kim, H. J. Kim, K. N. Heo, J. E. Song, and C. Jo. 2015. Comparison of bioactive compounds and quality traits of breast meat from Korean native ducks and commercial ducks. Korean J. Food Sci. An. 35:114-120.   DOI
12 Li, K., W. Li, and Y. Huang. 2007. Determination of free Lcarnitine in human seminal plasma by high performance liquid chromatography with pre-column ultraviolet derivatization and its clinical application in male infertility. Clin. Chim. Acta 378:159-163.   DOI
13 Lopez, K. P., M. W. Schilling, and A. Corzo. 2011. Broiler genetic strain and sex effects on meat characteristics. Poult. Sci. 90:1105-1111.   DOI
14 Mahmoudnia, N. and Y. Madani. 2012. Effect of betaine on performance and carcass composition of broiler chicken in warm weather: A review. Int. J. Agric. Sci. 2:675-683.
15 Mateescu, R. G., A. J. Garmyn, N. A. O'Neil, R. G. Tait, A. Abuzaid, M. S. Mayes, D. J. Garrick, A. L. Van Eenennaam, D. L. Van Overbeke, G. G. Hilton, D. C. Beitz, and J. M. Reecy. 2012. Genetic parameters of carnitine, creatine, creatinine, carnosine, and anserine concentration in longissimus muscle and their association with palatability traits in Angus cattle. J. Anim. Sci. 90:4248-4255.   DOI
16 OECD-FAO Agricultural Outlook 2009-2018. http://www.oecd.org/berlin/43042301.pdf. Accessed July 1, 2015.
17 Patrick, L. 2002. Nonalcoholic fatty liver disease: relationship to insulin sensitivity and oxidative stress: Treatment approaches using vitamin E, magnesium, and betaine. Altern. Med. Rev. 7:276-291.
18 Schmid, A. 2009. Bioactive substances in meat and meat products. Fleischwirtschaft 89:83-90.
19 Patterson, K. Y., S. A. Bhagwat, J. R. Williams, J. C. Howe, J. M. Holden, S. H. Zeisel, K. A. Dacosta, and M. H. Mar. 2008. USDA database for the choline content of common foods, release two. http://www.ars.usda.gov/SP2UserFiles/Place/80400525/Data/Choline/Choln02.pdf. Accessed July 1, 2015.
20 Rigault, C., F. Mazue, A. Bernard, J. Demarquoy, and F. Le Borgne. 2008. Changes in L-carnitine content of fish and meat during domestic cooking. Meat Sci. 78:331-335.   DOI
21 Shimada, K., Y. Sakuma, J. Wakamatsu, M. Fukushima, M. Sekikawa, K. Kuchida, and M. Mikami. 2004. Species and muscle differences in L-carnitine levels in skeletal muscles based on a new simple assay. Meat Sci. 68:357-362.   DOI
22 Steiber, A., J. Kerner, and C. L. Hoppel. 2004. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol. Aspects Med. 25:455-473.   DOI
23 Suchy, P., P. Jelinek, E. Strakova, and J. Hucl. 2002. Chemical composition of muscles of hybrid broiler chickens during prolonged feeding. Czech J. Anim. Sci. 47:511-518.
24 Thomas, N. L., T. C. Grey, J. M. Jones, D. Robinson, and S. W. Stock. 1984. Observations on the effect of age and sex on the nitrogen factor of chicken carcass parts including the edible offals. Int. J. Food Sci. Technol. 19:11-15.
25 Wattanachant, S., S. Benjakul, and D. A. Ledward. 2004. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult. Sci. 83:123-128.   DOI
26 Borum, P. R. 1978. Variation in tissue carnitine concentrations with age and sex in the rat. Biochem. J. 176:677-681.   DOI
27 Arslan, C., M. Citil, and M. Saatci. 2003. Effects of L-carnitine administration on growth performance, carcass traits, blood serum parameters and abdominal fatty acid composition of ducks. Arch. Anim. Nutr. 57:381-388.   DOI
28 Association of Official Agricultural Chemists. 1995. Official Methods of Analysis of AOAC International. Association of Official Agricultural Chemists, 16th Ed. Washington, DC, USA.
29 Biesalski, H. K. 2005. Meat as a component of a healthy diet-are there any risks or benefits if meat is avoided in the diet? Meat Sci. 70:509-524.   DOI
30 Choe, J. H., K. C. Nam, S. Jung, B. N. Kim, H. J. Yun, and C. R. Jo. 2010. Differences in the quality characteristics between commercial Korean native chickens and broilers. Korean J. Food Sci. An. 30:13-19.   DOI
31 Cholewa, J. M., M. Wyszczelska-Rokiel, R. Glowacki, H. Jakubowski. T. Matthews, R. Wood, S. A. S. Craig, and V. Paolone. 2013. Effects of betaine on body composition, performance, and homocysteine thiolactone. J. Int. Soc. Sport Nutr. 10:39-50.   DOI
32 Craig, S. A. S. 2004. Betaine in human nutrition. Am. J. Clin. Nutr. 80:539-549.   DOI
33 Dragolovich, J. 1994. Dealing with salt stress in animal cells: the role and regulation of glycine betaine concentrations. J. Exp. Zool. 268:139-144.   DOI
34 Ehrenborg, E. and A. Krook. 2009. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferatoractivated receptor ${\delta}$. Pharmacol. Rev. 61:373-393.   DOI