Browse > Article
http://dx.doi.org/10.5713/ajas.15.0468

Molecular Characterization and Expression Analysis of Creatine Kinase Muscle (CK-M) Gene in Horse  

Do, Kyong-Tak (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University)
Cho, Hyun-Woo (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University)
Badrinath, Narayanasamy (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University)
Park, Jeong-Woong (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University)
Choi, Jae-Young (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University)
Chung, Young-Hwa (BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University)
Lee, Hak-Kyo (Department of Animal Biotechnology, Chonbuk National University)
Song, Ki-Duk (Department of Animal Biotechnology, Chonbuk National University)
Cho, Byung-Wook (Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.12, 2015 , pp. 1680-1685 More about this Journal
Abstract
Since ancient days, domestic horses have been closely associated with human civilization. Today, horse racing is an important industry. Various genes involved in energy production and muscle contraction are differentially regulated during a race. Among them, creatine kinase (CK) is well known for its regulation of energy preservation in animal cells. CK is an iso-enzyme, encoded by different genes and expressed in skeletal muscle, heart, brain and leucocytes. We confirmed that the expression of CK-M significantly increased in the blood after a 30 minute exercise period, while no considerable change was observed in skeletal muscle. Analysis of various tissues showed an ubiquitous expression of the CK-M gene in the horse; CK-M mRNA expression was predominant in the skeletal muscle and the cardiac muscle compared to other tissues. An evolutionary study by synonymous and non-synonymous single nucleotide polymorphism ratio of CK-M gene revealed a positive selection that was conserved in the horse. More studies are warranted in order to develop the expression of CK-M gene as a biomarker in blood of thoroughbred horses.
Keywords
Horse; Biomarker; Creatine Kinase Muscle; Exercise; Quantitative-polymerase Chain Reaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Eivers, S. S., B. A. McGivney, R. G. Fonseca, D. E. MacHugh, K. Menson, S. D. Park, J. L. Rivero, C. T. Taylor, L. M. Katz, and E. W. Hill. 2010. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genomics 40:83-93.   DOI
2 Fredericks, S., G. K. Merton, M. J. Lerena, P. Heining, N. D. Carter, and D. W. Holt. 2001. Cardiac troponins and creatine kinase content of striated muscle in common laboratory animals. Clin. Chim. Acta 304:65-74.   DOI
3 Gu, J., D. E. MacHugh, B. A. McGivney, S. D. E. Park, L. M. Katz, and E. W. Hill. 2010. Association of sequence variants in CKM (creatine kinase, muscle) and COX4I2 (cytochrome c oxidase, subunit 4, isoform 2) genes with racing performance in Thoroughbred horses. Equine Vet. J. 42:569-575.   DOI
4 Hill, E. W., R. G. Fonseca, B. A. McGivney, J. Gu, D. E. MacHugh, and L. M. Katz. 2012. MSTN genotype (g. 66493737C/T) association with speed indices in Thoroughbred racehorses. J. Appl. Physiol. 112:86-90.   DOI
5 Hill, E. W., J. Gu, B. A. McGivney, and D. E. MacHugh. 2010. Targets of selection in the Thoroughbred genome contain exercise‐relevant gene SNPs associated with elite racecourse performance. Anim. Genetics 41: 56-63.   DOI
6 Hinchcliff, K. W. and R. J. Geor. 2008. The Horse as an Athlete: A Physiological Overview. Equine Exercise Physiology: The Science of Exercise in the Athletic Horse. Saunders/Elsevier, Edinburgh, UK. p. 463.
7 Korge, P., S. K. Byrd, and K. B. Campbell. 1993. Functional coupling between sarcoplasmic‐reticulum‐bound creatine kinase and $Ca^{2+}$‐ATPase. Eur. J. Biochem. 213:973-980.   DOI
8 Wallimann, T., M. Wyss, D. Brdiczka, K. Nicolay, and H. M. Eppenberger. 1992. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the phosphocreatine circuit for cellular energy homeostasis. Biochem. J. 281:21-40.   DOI
9 Zhou, D. Q., Y. Hu, G. Liu, L. Gong, Y. Xi, and L. Wen. 2006. Muscle-specific creatine kinase gene polymorphism and running economy responses to an 18-week 5000-m training programme. Br. J. Sports Med. 40:988-991.   DOI
10 Bustamante, C. D., A. Fledel-Alon, S. Williamson, R. Nielsen, M. T. Hubisz, S. Glanowski, D. M. Tanenbaum, T. J. White, J. J. Sninsky, R. D. Hernandez, D. Civello, M. D. Adams, M. Cargill, and A. G. Clark. 2005. Natural selection on protein-coding genes in the human genome. Nature 437:1153-1157.   DOI
11 Echegaray, M. and M. A. Rivera. 2001. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance. Sports Med. 31:919-934.   DOI
12 Schroder, W., A. Klostermann, and O. Distl. 2011. Candidate genes for physical performance in the horse. The Veterinary Journal 190:39-48.   DOI
13 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25:402-408.   DOI
14 McGivney, B. A., P. A. McGettigan, J. A. Browne, A. C. Evans, R. G. Fonseca, B. J. Loftus, A. Lohan, D. E. Machugh, B. A. Murphy, L. M. Katz, and E. W. Hill. 2010. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics 11:398.   DOI
15 Octura, J. E. R., K. J. Lee, H. W. Cho, R. S. Vega, J. Y. Choi, J. W. Park, T. S. Shin, S. K. Cho, B. W. Kim, and B. W. Cho. 2014. Elevation of blood creatine kinase and selected blood parameters after exercise in thoroughbred racehorses (Equus caballus L). Quest J. 2:7-13
16 Song, K. D., H. W. Cho, H. K. Lee, and B.W. Cho. 2014. Molecular Characterization and Expression Analysis of Equine Vascular Endothelial Growth Factor Alpha ($VEGF{\alpha}$) Gene in Horse (Equus caballus). Asian Australas. J. Anim. Sci. 27:743-748.   DOI
17 Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.   DOI
18 Tsung, S. H. 1976. Creatine kinase isoenzyme patterns in human tissue obtained at surgery. Clin. Chem. 22:173-175.