Browse > Article
http://dx.doi.org/10.5713/ajas.15.0130

Effect of Lipid Sources with Different Fatty Acid Profiles on Intake, Nutrient Digestion and Ruminal Fermentation of Feedlot Nellore Steers  

Fiorentini, Giovani (Department of Animal Sciences, UNESP, Univ Estadual Paulista)
Carvalho, Isabela P.C. (Department of Animal Sciences, UNESP, Univ Estadual Paulista)
Messana, Juliana D. (Department of Animal Sciences, UNESP, Univ Estadual Paulista)
Canesin, Roberta C. (Department of Animal Sciences, UNESP, Univ Estadual Paulista)
Castagnino, Pablo S. (Department of Animal Sciences, UNESP, Univ Estadual Paulista)
Lage, Josiane F. (Department of Animal Sciences, UNESP, Univ Estadual Paulista)
Arcuri, Pedro B. (Embrapa, Centro Nacional de Pesquisa de Gado de Leite)
Berchielli, Telma T. (Department of Animal Sciences, Instituto Nacional de Ciencia e Tecnologia-Ciencia Animal, Universidade Federal deVicosa)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.11, 2015 , pp. 1583-1591 More about this Journal
Abstract
The present study was conducted to determine the effect of lipid sources with different fatty acid profiles on nutrient digestion and ruminal fermentation. Ten rumen and duodenal fistulated Nellore steers (268 body weight${\pm}27kg$) were distributed in a duplicated $5{\times}5$ Latin square. Dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF; Lactoplus), and whole soybeans (WS). The roughage feed was corn silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The higher intake of DM and organic matter (OM) (p<0.001) was found in animals on the diet with PF and WF (around 4.38 and 4.20 kg/d, respectively). Treatments with PO and LO decreased by around 10% the total digestibility of DM and OM (p<0.05). The addition of LO decreased by around 22.3% the neutral detergent fiber digestibility (p = 0.047) compared with other diets. The higher microbial protein synthesis was found in animals on the diet with LO and WS (33 g N/kg OM apparently digested in the rumen; p = 0.040). The highest C18:0 and linolenic acid intakes occurred in animals fed LO (p<0.001), and the highest intake of oleic (p = 0.002) and C16 acids (p = 0.022) occurred with the diets with LO and PF. Diet with PF decreased biohydrogenation extent (p = 0.05) of C18:1 n9,c, C18:2 n6,c, and total unsaturated fatty acids (UFA; around 20%, 7%, and 13%, respectively). The diet with PF and WF increased the concentration of $NH_3-N$ (p<0.001); however, the diet did not change volatile fatty acids (p>0.05), such as the molar percentage of acetate, propionate, butyrate and the acetate:propionate ratio. Treatments PO, LO and with WS decreased by around 50% the concentration of protozoa (p<0.001). Diets with some type of protection (PF and WS) decreased the effects of lipid on ruminal fermentation and presented similar outflow of benefit UFA as LO.
Keywords
Beef Cattle; Biohydrogenation; Microbial Protein Synthesis; Lipids; Protozoa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 AOAC. 1990. Official Methods of Analysis. 15th. ed. Association of Official Analytical Chemists, Arlington, VA, USA.
2 Casali, A. O., E. Detmann, S. C. Valadares Filho, J. C. Pereira, L. T. Henriques, S. G. Freitas, and M. F. Paulino. 2008. Influence of incubation time and particles size on indigestible compounds contents in cattle feeds and feces obtained by in situ procedures. R. Bras. Zoot. 37:335-342.   DOI   ScienceOn
3 Doreau, M. and A. Ferlay. 1994. Digestion and utilization of fatty acids by ruminants. Anim. Feed Sci. Technol. 45:379-396.   DOI   ScienceOn
4 Doreau, M. and A. Ferlay. 1995. Effect of dietary lipids on nitrogen metabolism in the rumen: a review. Livest. Product. Sci. 43:97-110.   DOI   ScienceOn
5 Duckett, S. K. and M. H. Gillis. 2010. Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J. Anim. Sci. 88:2684-2691.   DOI   ScienceOn
6 Eugene, M., H. Archimede, and D. Sauvant. 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Prod. Sci. 85:81-97.   DOI   ScienceOn
7 Fenner, H. 1965. Method for determining total volatile bases in rumen fluid by steam distillation. J. Dairy Sci. 48:249-251.   DOI
8 Fiorentini, G., J. D. Messana, P. H. Dian, R. A. Reis, R. C. Canesin, A. V. Pires, and T. T. Berchielli. 2013. Digestibility, fermentation and rumen microbiota of crossbred heifers fed diets with different soybean oil availabilities in the rumen. Anim. Feed Sci. Technol. 181:26-34.   DOI   ScienceOn
9 Fiorentini, G., I. P. Carvalho, J. D. Messana, P. S. Castagnino, A. Berndt, R. C. Canesin, R. T. Frighetto, and T. T. Berchielli. 2014. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers. J. Anim. Sci. 92:1613-1620.   DOI   ScienceOn
10 Harvatine, K. J. and M. S. Allen. 2006. Effects of fatty acid supplements on ruminal and total tract nutrient digestion in lactating dairy cows. J. Dairy Sci. 89:1092-1103.   DOI   ScienceOn
11 Ivan, M., P. S. Mir, K. M. Koenig, L. M. Rode, L. Neill, T. Entz, and Z. Mir. 2001. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Rumin. Res. 41:215-227.   DOI   ScienceOn
12 Jenkins, T. C. 1994. Regulation of lipid metabolism in the rumen. J. Nutr. 124(8 Suppl):1372S-1376G.   DOI
13 Jenkins, T. C. and W. C. Bridges Jr. 2007. Protection of fatty acids against ruminal biohydrogenation in cattle. Eur. J. Lipid Sci. Technol. 109:778-789.   DOI   ScienceOn
14 Klusmeyer, T. H. and J. K. Clark. 1991. Effects of dietary fat and protein on fatty acid flow to the duodenum and in milk produced by dairy cows. J. Dairy Sci. 74:3055-3067.   DOI
15 Lundy, F. P., E. Block, W. C. Bridges Jr., J. A. Bertrand, and T. C. Jenkins. 2004. Ruminal biohydrogenation in Holstein cows fed soybean fatty acids as amides or calcium salts. J. Dairy Sci. 87:1038-1046.   DOI   ScienceOn
16 Maia, M. R., L. C. Chaudhary, L. Figueres, and R. J. Wallace. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 91:303-314.   DOI
17 Manso, T., T. Castro, A. R. Mantecon, and V. Jimeno. 2006. Effects of palm oil and calcium soaps of palm oil fatty acids in fattening diets on digestibility, performance and chemical body composition of lambs. Anim. Feed Sci. Technol. 127:175-186.   DOI   ScienceOn
18 Menezes, L. F., G. V. Kozloski, J. Restle, I. L. Brondani, R. D. Pazdiora, and J. Cattelam. 2010. Profile of ingested fatty acids and in the duodenal digest of steers fed different diets. R. Bras. Zootec. 39:2502-2511.   DOI
19 Messana, J. D., T. T. Berchielli, P. B. Arcuri, R. A. Reis, R. C. Canesin, A. F. Ribeiro, G. Fiorentini, and J. J. Fernandes. 2013. Rumen fermentation and rumen microbes in Nellore steers receiving diets with different lipid contents. R. Bras. Zoot. 42:204-212.   DOI
20 Otaru, S. M., A. M. Adamu, O. W. Ehoche, and H. J. Makun. 2011. Effects of varying the level of palm oil on feed intake, milk yield and composition and postpartum weight changes of Red Sokoto goats. Small Rumin. Res. 96:25-35.   DOI   ScienceOn
21 Pina, D. S., S. C. Valadares Filho, L. O. Tedeschi, A. M. Barbosa, and R. F. Valadares. 2009. Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers. J. Anim. Sci. 87:1058-1067.   DOI
22 Russell, J. B., J. D. O'Connor, D. G. Fox, P. J. van Soest, and C. J. Sniffen. 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 70:3551-3561.   DOI
23 Schmidely, P., F. Glasser, M. Doreau, and D. Sauvant. 2008. Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors. 1. Total fatty acids. Animal 2:677-690.
24 Soliva, C. R., L. Meile, A. Cie.lak, M. Kreuzer, and A. Machmuller. 2004. Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. Br. J. Nutr. 92:689-700.   DOI   ScienceOn
25 Sterk, A., B. Vlaeminck, A. M. van Vuuren, W. H. Hendriks, and J. Dijkstra. 2012. Effects of feeding different linseed sources on omasal fatty acid flows and fatty acid profiles of plasma and milk fat in lactating dairy cows. J. Dairy Sci. 95:3149-3165.   DOI   ScienceOn
26 Sullivan, H. M., J. K. Bernard, H. E. Amos, and T. C. Jenkins. 2004. Performance of lactating dairy cows fed whole cottonseed with elevated concentrations of free fatty acids in the oil. J. Dairy Sci. 87:665-671.   DOI   ScienceOn
27 Ueda, K., A. Ferlay, J. Chabrot, J. J. Loor, Y. Chilliard, and M. Doreau. 2003. Effect of linseed oil supplementation on ruminal digestion in dairy cows fed diets with different forage:concentrate ratios. J. Dairy Sci. 86:3999-4007.   DOI   ScienceOn
28 Wanapat, M., C. Mapato, R. Pilajun, and W. Toburan. 2011. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livest. Prod. Sci. 135:32-37.   DOI   ScienceOn
29 Wu, Z., O. A. Ohajuruka, and D. L. Palmquist. 1991. Ruminal synthesis, biohydrogenation, and digestibility of fatty acids by dairy cows. J. Dairy Sci. 74:3025-3034.   DOI
30 Yang, S. L., D. P. Bu, J. Q. Wang, Z. Y. Hu, D. Li, H. Y. Wei, L. Y. Zhou, and J. J. Loor. 2009. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal 3:1562-1569.   DOI   ScienceOn