Browse > Article
http://dx.doi.org/10.5713/ajas.15.0059

Efficacy of New 6-Phytase from Buttiauxella spp. on Growth Performance and Nutrient Retention in Broiler Chickens Fed Corn Soybean Meal-based Diets  

Kiarie, E. (DuPont Industrial Bioscience-Danisco Animal Nutrition)
Woyengo, T. (Department of Animal Science, University of Manitoba)
Nyachoti, C.M. (Department of Animal Science, University of Manitoba)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.10, 2015 , pp. 1479-1487 More about this Journal
Abstract
A total of 420 day-old male Ross chicks were weighed at d 1 of life and assigned to test diets to assess the efficacy of a new Buttiauxella spp. phytase expressed in Trichoderma reesei. Diets were: positive control (PC) adequate in nutrients and negative control (NC) diet (40% and 17% less available phosphorous (P) and calcium (Ca), respectively) supplemented with 6 levels of phytase 0, 250, 500, 750, 1,000, and 2,000 phytase units (FTU)/kg of diet. All diets had titanium dioxide as digestibility marker and each diet was allocated to ten cages (6 birds/cage). Diets were fed for 3 wk to measure growth performance, apparent retention (AR) on d 17 to 21 and bone ash and ileal digestibility (AID) on d 22. Growth performance and nutrient utilization was lower (p<0.05) for NC vs PC birds. Phytase response in NC birds was linear (p<0.05) with 2,000 FTU showing the greatest improvement on body weight gain (20%), feed conversion (7.4%), tibia ash (18%), AR of Ca (38%), AR of P (51%) and apparent metabolizable energy corrected for nitrogen (5.1%) relative to NC. Furthermore, phytase at ${\geq}750FTU$ resulted in AID of total AA commensurate to that of PC fed birds and at ${\geq}1,000FTU$ improved (p<0.05) AR of P, dry matter, and N beyond that of the lower doses of phytase and PC diet. In conclusion, the result from this study showed that in addition to increased P and Ca utilization, the new Buttiauxella phytase enhanced growth performance and utilization of other nutrients in broiler chickens in a dose-dependent manner.
Keywords
Amino Acid; Broiler; Growth Performance; Phosphorus; Phytase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adeola, O. and J. S. Sands. 2003. Does supplemental dietary microbial phytase improve amino acid utilization? A perspective that it does not. J. Anim. Sci. 81:E78-85E.
2 Adeola, O. and A. J. Cowieson. 2011. Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 89:3189-3218.   DOI   ScienceOn
3 Association of Official Analytical Chemists (AOAC). 1984. Official Methods of Analysis. 14th ed. AOAC, Washington, DC, USA.
4 Association of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis. 15th ed. AOAC, Washington, DC, USA.
5 Association of Official Analytical Chemists (AOAC). 2005. Official Methods of Analysis of AOAC International. 18th ed. AOAC Int., Gaithersburg, MD, USA.
6 Amerah, A. M., P. W. Plumstead, L. P. Barnard, and A. Kumar. 2014. Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poult. Sci. 93:906-915.   DOI   ScienceOn
7 Canadian Council on Animal Care. 2009. Guide to Care and Use of Experimental Animals. VI. Canadian Council on Animal Care. Ottawa, ON, Canada.
8 Cowieson, A. J., T. Acamovic, and M. R. Bedford. 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br. Poult. Sci. 45: 101-108.   DOI   ScienceOn
9 Cowieson, A. J. and O. Adeola. 2005. Carbohydrases, protease, and phytase have an additive beneficial effect in nutritionally marginal diets for broiler chicks. Poult. Sci. 84:1860-1867.   DOI
10 Yu, S., M. F. Kvidtgaard, M. F. Isaksen, and S. Dalsgaard. 2014. Characterization of a mutant Buttiauxella phytase using phytic Acid and phytic acid-protein complex as substrates. Anim. Sci. Lett. 1:18-32.
11 Zhang X., D. A. Roland, G. R. McDaniel, and S. K. Rao. 1999. Effect of Natuphos phytase supplementation to feed on performance and ileal digestibility of protein and amino acids of broilers. Poult. Sci. 78:1567-1572.   DOI
12 Kiarie E. and C. M. Nyachoti. 2009. Bioavailability of calcium and phosphorous in feedstuffs for farm animals. In: Phosphorous and Calcium Utilization and Requirements in Farm Animals (Eds. DMSS Vitti and E Kebreab). CAB International, Wallingford, UK. pp. 76-83.
13 Adedokun, S. A., A. Owusu-Asiedu, P. Plumstead, and O. Adeola. 2013. The efficacy of graded levels of a new 6-phytase from Buttiauxella spp. expressed in Trichoderma reesei on ileal amino acid digestibility in pigs fed a corn-soybean meal-wheat midds corn DDGs-based diet. J. Anim. Sci. 91(E-Suppl. 2):411.
14 Cowieson, A. J., T. Acamovic, and M. R. Bedford. 2006. Supplementation of corn-soy-based diets with an Escherichia coli-derived phytase: effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poult. Sci. 85:1389-1397.   DOI
15 Glynn, I. M. 1993. All hands to the sodium pump. J. Physiol. 462: 1-30.   DOI
16 Greiner, R. and U. Konietzny. 2010. Phytases: Biochemistry, Enzymology and Characteristics Relevant to Animal Feed Use. In: Enzymes in Farm Animal Nutrition, 2nd ed., (Eds. M. R. Bedford and G. G. Partridge). CAB International, Wallingford, UK. pp. 96-128.
17 Greiner, R., N.-G. Carlsson, and M. L. Alminger. 2000. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. J. Biotechnol. 84:53-62.   DOI   ScienceOn
18 Kiarie, E., L. F. Romero, and C. M. Nyachoti. 2013. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev. 26:71-88.   DOI   ScienceOn
19 Latta, M. and M. A. Eskin. 1980. A simple and rapid colorimetric method for phytate determination. J. Agric. Food Chem. 28:1313-1315.   DOI
20 Lomer, M. C. E., R. P. H. Thompson, J. Commisso, C. L. Keen, and J. J. Powell. 2000. Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst 125:2339-2343.   DOI   ScienceOn
21 Onyango, E. M., E. K. Asem, and O. Adeola. 2009. Phytic acid increases mucin and endogenous amino acid losses from the gastrointestinal tract of chickens. Br. J. Nutr. 101:836-842.   DOI
22 Martinez-Amezcua, C., C. M. Parsons, and D. H. Baker. 2006. Effect of microbial phytase and citric acid on phosphorus bioavailability, apparent metabolizable energy, and amino acid digestibility in distillers dried grains with solubles in chicks. Poult. Sci. 85:470-475.   DOI
23 Mills, P. A., R. G. Rotter, and R. R. Marquardt. 1989. Modification of the glucosamine method for the quantification of fungal contamination. Can J. Anim. Sci. 69:1105-1106.   DOI
24 NRC. 1994. Nutrient Requirements of Poultry. 19th rev. ed. Natl. Acad. Press, Washington, DC, USA.
25 Ravindran, V., S. Cabahug, G. Ravindran, and W. L. Bryden. 1999. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 78:699-706.   DOI
26 Ravindran, V. 2013. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 22:628-636.   DOI   ScienceOn
27 Ravindran, V., A. J. Cowieson, and P. H. Selle. 2008. Influence of dietary electrolyte balance and microbial phytase on growth performance, nutrient utilization, and excreta quality of broiler chickens. Poult. Sci. 87:677-688.   DOI   ScienceOn
28 Rutherfurd, S. M., T. K. Chung, and P. J. Moughan. 2002. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. Br. Poult. Sci. 43:598-606.   DOI   ScienceOn
29 Rutherfurd, S. M., T. K. Chung, D. V. Thomas, M. L. Zou, and P. J. Moughan. 2012. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poult. Sci. 91:1118-1127.   DOI   ScienceOn
30 Rutherfurd, S. M., T. K. Chung, P. C. H. Morel, and P. J. Moughan. 2004. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Sci. 83:61-68.   DOI
31 Santos, F. R., M. Hruby, E. E. M. Pierson, J. C. Remus, and N. K. Sakomura. 2008. Effect of phytase supplementation in diets on nutrient digestibility and performance in broiler chicks. J. Appl. Poult. Res. 17:191-201.   DOI
32 Selle, P. H., V. Ravindran, R. A. Caldwell, and W. L. Bryden. 2000. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev. 13:255-278.   DOI   ScienceOn
33 Selle, P. H. and V. Ravindran. 2007. Microbial phytase in poultry nutrition. Anim. Feed. Sci. Technol. 135:1-41.   DOI   ScienceOn
34 Selle, P. H., A. J. Cowieson, and V. Ravindran. 2009. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 124:126-141.   DOI   ScienceOn
35 Selle, P. H., A. J. Cowieson, N. P. Cowieson, and V. Ravindran. 2012. Protein-phytate interactions in pig and poultry nutrition: A reappraisal. Nutr. Res. Rev. 25:1-17.   DOI
36 Tamim, N. M., R. Angel, and M. Christman. 2004. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult. Sci. 83:1358-1367.   DOI
37 Wise, A. 1983. Dietary factors determining the biological activity of phytates. Nutr. Abstr. Rev. Clin. Nutr. 53:791-806.
38 Um, J. S., H. S. Lim, S. H. Ahn, and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian Australas. J. Anim. Sci. 13:824-829.   DOI
39 Vigors, S., T. Sweeney, C. J. O'Shea, J. A. Browne, and J. V. O'Doherty. 2014. Improvements in growth performance, bone mineral status and nutrient digestibility in pigs following the dietary inclusion of phytase are accompanied by modifications in intestinal nutrient transporter gene expression. Br. J. Nutr. 112:688-697.   DOI   ScienceOn
40 Waldroup, P. W. 1999. Nutritional approaches to reducing phosphorus excretion by poultry. Poult. Sci. 78:683-691.   DOI
41 Woyengo T. A., A. J. Cowieson, O. Adeola, and C. M. Nyachoti. 2009. Ileal digestibility and endogenous flow of minerals and amino acids: responses to dietary phytic acid in piglets. Br. J. Nutr. 102:428-433   DOI   ScienceOn
42 Woyengo, T. A., E. Kiarie, and C. M. Nyachoti. 2010. Metabolizable energy and standardized ileal digestible amino acid contents of expeller-extracted canola meal fed to broiler chicks. Poult. Sci. 89:1182-1189.   DOI   ScienceOn
43 Woyengo, T. A., D. Weihrauch, and C. M. Nyachoti. 2012. Effect of dietary phytic acid on performance and nutrient uptake in the small intestine of piglets. J. Anim. Sci. 90:543-549.   DOI   ScienceOn
44 Yu, S., A. J. Cowieson, C. Gilbert, P. Plumstead, and S. Dalsgaard. 2012. Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. J. Anim. Sci. 90:1824-1832.   DOI   ScienceOn