Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13690

Genome-wide Association Study for Warner-Bratzler Shear Force and Sensory Traits in Hanwoo (Korean Cattle)  

Dang, C.G. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration)
Cho, S.H. (Animal Product Research and Development Division, National Institute of Animal Science, Rural Development Administration)
Sharma, A. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration)
Kim, H.C. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration)
Jeon, G.J. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration)
Yeon, S.H. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration)
Hong, S.K. (National Institute of Animal Science, Rural Development Administration)
Park, B.Y. (Animal Product Research and Development Division, National Institute of Animal Science, Rural Development Administration)
Kang, H.S. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration)
Lee, S.H. (Hanwoo Experiment Station, National Institute of Animal Science, Rural Development Administration)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.9, 2014 , pp. 1328-1335 More about this Journal
Abstract
Significant SNPs associated with Warner-Bratzler (WB) shear force and sensory traits were confirmed for Hanwoo beef (Korean cattle). A Bonferroni-corrected genome-wide significant association (p< $1.3{\times}10^{-6}$) was detected with only one single nucleotide polymorphism (SNP) on chromosome 5 for WB shear force. A slightly higher number of SNPs was significantly (p<0.001) associated with WB shear force than with other sensory traits. Further, 50, 25, 29, and 34 SNPs were significantly associated with WB shear force, tenderness, juiciness, and flavor likeness, respectively. The SNPs between p = 0.001 and p = 0.0001 thresholds explained 3% to 9% of the phenotypic variance, while the most significant SNPs accounted for 7% to 12% of the phenotypic variance. In conclusion, because WB shear force and sensory evaluation were moderately affected by a few loci and minimally affected by other loci, further studies are required by using a large sample size and high marker density.
Keywords
Genome-wide Association Study; Warner-Bratzler Shear Force; Sensory Traits; Hanwoo Beef;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, D. D. Johnson, and T. P. L. Smith. 2006. Effects of calpastatin and (micro)-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 84: 520-525.   DOI
2 Cho, S. H., J. Kim, B. Y. Park, P. N. Seong, G. H. Kim, S. G. Jung, S. K. Im, and D. H. Kim. 2010. Assessment of meat quality properties and development of a palatability prediction model for Korean Hanwoo steer beef. Meat Sci. 86:236-242.   DOI   ScienceOn
3 Koohmaraie, M. 1994. Muscle proteinases and meat ageing. Meat Sci. 36:93-104.   DOI   ScienceOn
4 Koohmaraie, M., M. P. Kent, S. D. Shackleford, E. Veiseth, and T. L. Wheeler. 2002. Meat tenderness and muscle growth: Is there any relationship. Meat Sci. 62:345-352.   DOI   ScienceOn
5 Love, J. 1994. Product acceptability evaluation. In: Quality Attributes and Their Measurement in Meat, Poultry and Fish Products. (Eds. A. M. Pearson and T. R. Dutson). Blackie Academic and Professional, Glasgow, UK. Adv. Meat Res. 9:337-358.
6 Marshall, D. M. 1999. Genetics of Meat Quality. CABI International, Oxfordshire, UK.
7 Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan, M. P. Heaton, J. O'Connell, S. S. Moore, T. P. L. Smith, T. S. Sonstegard, and C. P. VanTassell. 2009. Development and characterization of a high density SNP genotyping assay for cattle. Plos one. 4(4):e5350.   DOI   ScienceOn
8 White, S. N., E. Casas, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, Jr., D. D. Johnson, J. W. Keele, and T. P. L. Smith. 2005. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci. 83:2001-2008.   DOI
9 Caine, W. R., J. L. Aalhus, D. R. Best, M. E. R. Dugan, and L. E. Jeremiah. 2003. Relationship of texture profiles analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Sci. 64:333-339.   DOI   ScienceOn
10 Carmack, C. F., C. L. Kastner, M. E. Dikeman, J. R. Schwenke, and C. M. Garcia Zepeda. 1995. Sensory evaluation of beef flavor intensity, tenderness and juiciness among major muscles. Meat Sci. 39:143-147.   DOI   ScienceOn
11 Rolf, M. M., S. D. Mckay, M. C. McClure, J. E. Decker, T. M. Taxis, R. H. Chapple, D. A. Vasco, S. J. Gregg, J. W. Kim, R. D. Schnabel, and J. F. Taylor. 2010. How the next generation of genetic technologies will impact beef cattle selection. Proceedings of the Beef Improvement Federations 42nd Annual Research Symposium and Annual Meeting, Columbia, MO, USA. 46-56.
12 Schenkel, F. S., S. P. Miller, Z. Jiang, I. B. Mandell, X. Ye, H. Li, and J. W. Wilton. 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 84:291-299.   DOI
13 Shackelford, S. D., T. L. Wheeler, M. K. Meade, J. O. Reagan, B. L. Byrnes and M. Koohmaraie. 2001. Consumer impressions of Tender Select beef. J. Anim. Sci. 79:2605-2614.   DOI
14 Shackelford, S. D., T. L. Wheeler, and M. Koohmaraie. 2005. On-line classification of US Select beef carcasses for longissimus tenderness using visible and near-infrared reflectance spectroscopy. eat Sci. 69:409-415.   DOI   ScienceOn
15 Drinkwater, R. D., Y. Li, I. Lenane, G. P. Davis, R. Shorthose, B. E. Harrison, K. Richardson, D. Ferguson, R. Stevenson, J. Renaud, I. Loxton, R. J. Hawken, M. B. Thomas, S. Newman, D. J. S. Hetzel, and W. Barendse. 2006. Detecting quantitative trait loci affecting beef tenderness on bovine chromosome 7 near calpastatin and lysyl oxidase. Aust. J. Exp. Agric. 46:159-164.   DOI   ScienceOn
16 Shahidi, F. and L. J. Rubin. 1986. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluations. CRC Crit. Rev. Food Sci. Nutr. 24:141-243.   DOI   ScienceOn
17 Wheeler, T. L., S. D. Shackelford, and M. Koohmaraie. 2000. Relationship of beef longissimus tenderness classes to tenderness of gluteus medius, semimembranosus, and biceps femoris. J. Anim. Sci. 78:2856-2861.   DOI
18 Destefanis, G., A. Brugiapaglia, M. T. Barge, and E. Dal Molin. 2008. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force. Meat Sci. 78:153-156.   DOI   ScienceOn
19 Dunner, S., N. Sevane, D. Garcia, O. Cortes, A. Valentini, J. L. Williams, B. Mangin, J. Canon, and H. Leveziel. 2013. The GeMQual consortium. Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livest. Sci. 154:34-44.   DOI   ScienceOn
20 Jeremiah, L. E. 1982. Consumer preferences regarding cooking methods and times for beef loin steaks in central Alberta. J. Consum. Stud. Home Econ. 6:79 -86.   DOI
21 Keele, J. W., S. D. Shackelford, S. M. Kappes, M. Koohmaraie, and R. T. Stone. 1999. A region on bovine chromosome 15 influences beef longissimus tenderness in steers. J. Anim. Sci. 77:1364-1371.   DOI
22 Casas, E. 2002. Identification of quantitative trait loci in beef cattle. Archivos Latinoamericanos de Produccion Anim. 10: 54-61.
23 Miller, M. F., M. A. Carr, C. B. Ramsey, K. L. Crokett, and L. C. Hoover. 2001. Consumer thresholds for establishing the values of beef tenderness. J. Anim. Sci. 79:3062-3068.   DOI
24 Casas, E., S. N. White, D. G. Riley, T. P. L. Smith, R. A. Brenneman, T. A. Olson, D. D. Johnson, S. W. Coleman, G. L. Bennett, and C. C. Chase. 2005. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J. Anim. Sci. 83:13-19.   DOI
25 Bolormaa, S., L. R. Porto Neto, Y. D. Zhang, R. J. Bunch, B. E. Harrison, M. E. Goddard, and W. Barendse. 2011. A genome-wide association study of meat and carcass traits in Australian cattle. J. Anim. Sci. 89:2297-2309.   DOI   ScienceOn
26 Meuwissen, T. H. E. and M. E. Goddard. 2000. Fine mapping quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155:421-430.
27 Page, B. T., E. Casas, M. P. Heaton, N. G. Cullen, D. L. Hyndman, C. A. Morris, A. M. Crawford, T. L. Wheeler, M. Koohmaraie, J. W. Keele, and T. P. L. Smith. 2002. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80:3077-3085.   DOI
28 Page, B. T., E. Casas, R. L. Quaas, R. M. Thallman, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, S. N. White, G. L. Bennett, J. W. Keele, M. E. Dikeman, and T. P. L. Smith. 2004. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J. Anim. Sci. 82:3474-3481.   DOI
29 Pausch, H., K. Flisikowski, S. Jung, R. Emmerling, C. Edel, K. Gotz, and R. Fries. 2011. Genome-wide association study identifies two major loci affecting calving ease and growth-related traits in cattle. Genetics 187:289-297.   DOI
30 Lee, S. H., S. C. Kim, H. H. Chai, S. H. Cho, D. J. Lim, B. H. Choi, C. G. Dang, C. Gondro, B. S. Yang, and S. K. Hong. 2013. Mutations in calpastatin and $\mu$-calpain are associated with meat tenderness, flavor, and juiciness of Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/$\mu$-calpain complex. Meat Sci. 96:1501-1508.