Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13471

Selection of Reference Genes for Gene Expression Studies in Porcine Whole Blood and Peripheral Blood Mononuclear Cells under Polyinosinic:Polycytidylic Acid Stimulation  

Wang, Jiying (Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences)
Wang, Yanping (Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences)
Wang, Huaizhong (Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences)
Hao, Xiaojing (Qingdao Institute of Animal Science and Veterinary Medicine)
Wu, Ying (Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences)
Guo, Jianfeng (Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.4, 2014 , pp. 471-478 More about this Journal
Abstract
Investigating gene expression of immune cells of whole blood or peripheral blood mononuclear cells (PBMC) under polyinosinic:polycytidylic acid (poly I:C) stimulation is valuable for understanding the immune response of organism to RNA viruses. Quantitative real-time PCR (qRT-PCR) is a standard method for quantification of gene expression studies. However, the reliability of qRT-PCR data critically depends on proper selection of reference genes. In the study, using two different analysis programs, geNorm and NormFinder, we systematically evaluated the gene expression stability of six candidate reference genes (GAPDH, ACTB, B2M, RPL4, TBP, and PPIA) in samples of whole blood and PBMC with or without poly I:C stimulation. Generally, the six candidate genes performed a similar trend of expression stability in the samples of whole blood and PBMC, but more stably expressed in whole blood than in PBMC. geNorm ranked B2M and PPIA as the best combination for gene expression normalization, while according to NormFinder, TBP was ranked as the most stable reference gene, followed by B2M and PPIA. Comprehensively considering the results from the two programs, we recommended using the geometric mean of the three genes, TBP, PPIA and B2M, to normalize the gene expression of whole blood and PBMC with poly I:C stimulation. Our study is the first detailed survey of the gene expression stability in whole blood and PBMC with or without poly I:C stimulation and should be helpful for investigating the molecular mechanism involved in porcine whole blood and PBMC in response to poly I:C stimulation.
Keywords
Pigs; Reference Genes; Whole Blood; Peripheral Blood Mononuclear Cells (PBMC); Polyinosinic:Polycytidylic Acid (Poly I:C);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Caskey, M., F. Lefebvre, A. Filali-Mouhim, M. J. Cameron, J. P. Goulet, E. K. Haddad, G. Breton, C. Trumpfheller, S. Pollak, I. Shimeliovich, A. Duque-Alarcon, L. Pan, A. Nelkenbaum, A. M. Salazar, S. J. Schlesinger, R. M. Steinman, and R. P. Sekaly. 2011. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med. 208:2357-2366.   DOI
2 Andersen, C. L., J. L. Jensen, and T. F. Orntoft. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245-5250.   DOI   ScienceOn
3 Brym, P., A. Rusc, and S. Kaminski. 2013. Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemia-virus infected cattle. Vet. Immunol. Immunopathol. 153:302-307.   DOI   ScienceOn
4 Cao, Y., Z. Lu, Y. Li, P. Sun, D. Li, P. Li, X. Bai, Y. Fu, H. Bao, and C. Zhou. 2013. Poly (I: C) combined with multi-epitope protein vaccine completely protects against virulent foot-andmouth disease virus challenge in pigs. Antiviral Res. 97:145-153.   DOI   ScienceOn
5 Cinar, M. U., M. A. Islam, M. J. Uddin, E. Tholen, D. Tesfaye, C. Looft, and K. Schellander. 2012. Evaluation of suitable reference genes for gene expression studies in porcine alveolar macrophages in response to LPS and LTA. BMC Res. Notes 5:107.   DOI
6 Facci, M. R., G. Auray, F. Meurens, R. Buchanan, J. van Kessel, and V. Gerdts. 2011. Stability of expression of reference genes in porcine peripheral blood mononuclear and dendritic cells. Vet. Immunol. Immunopathol. 141:11-15.   DOI   ScienceOn
7 Martino, A., M. Cabiati, M. Campan, T. Prescimone, D. Minocci, C. Caselli, A. M. Rossi, D. Giannessi, and S. Del Ry. 2011. Selection of reference genes for normalization of real-time PCR data in minipig heart failure model and evaluation of TNF-$\alpha$ mRNA expression. J. Biotechnol. 153:92-99.   DOI   ScienceOn
8 Gao, Y., L. Flori, J. Lecardonnel, D. Esquerre , Z. L. Hu, A. Teillaud, G. Lemonnier, F. Lefevre, I. Oswald, and C. Rogel-Gaillard. 2010. Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response. BMC Genomics 11:292.   DOI   ScienceOn
9 Hellemans, J., G. Mortier, A. De Paepe, F. Speleman, and J. Vandesompele. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8:R19.   DOI
10 Huggett, J., K. Dheda, S. Bustin, and A. Zumla. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6:279-284.   DOI   ScienceOn
11 McCartney, S., W. Vermi, S. Gilfillan, M. Cella, T. L. Murphy, R. D. Schreiber, K. M. Murphy, and M. Colonna. 2009. Distinct and complementary functions of MDA5 and TLR3 in poly (I: C)-mediated activation of mouse NK cells. J. Exp. Med. 206:2967-2976.   DOI   ScienceOn
12 Meurens, F., A. Summerfield, H. Nauwynck, L. Saif, and V. Gerdts. 2012. The pig: a model for human infectious diseases. Trends Microbiol. 20:50-57.   DOI   ScienceOn
13 Nygard, A. B., C. B. Jorgensen, S. Cirera, and M. Fredholm. 2007. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 8:67.   DOI
14 Spalenza, V., F. Girolami, C. Bevilacqua, F. Riondato, R. Rasero, C. Nebbia, P. Sacchi, and P. Martin. 2011. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes. Vet. J. 189:278-283.   DOI   ScienceOn
15 Pfaffl, M. W., A. Tichopad, C. Prgomet, and T. P. Neuvians. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26:509-515.   DOI   ScienceOn
16 Uddin, M. J., P. K. Nuro-Gyina, M. A. Islam, D. Tesfaye, E. Tholen, C. Looft, K. Schellander, and M. U. Cinar. 2012. Expression dynamics of Toll-like receptors mRNA and cytokines in porcine peripheral blood mononuclear cells stimulated by bacterial lipopolysaccharide. Vet. Immunol. Immunopathol. 147:211-222.   DOI   ScienceOn
17 Radonic, A., S. Thulke, H.-G. Bae, M. A. Muller, W. Siegert, and A. Nitsche. 2005. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections. Virol. J. 2:7.   DOI   ScienceOn
18 Uddin, M., M. Cinar, D. Tesfaye, C. Looft, E. Tholen, and K. Schellander. 2011. Age-related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues. BMC Res. Notes 4:441.   DOI   ScienceOn
19 Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, and F. Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034- research0034.11.
20 Xiang-Hong, J., Y. Yan-Hong, X. Han-Jin, A. Li-long, X. Ying-Mei, J. Pei-Rong, and L. Ming. 2011. Selection of reference genes for gene expression studies in PBMC from Bama miniature pig under heat stress. Vet. Immunol. Immunopathol. 144:160-166.   DOI   ScienceOn
21 Zhang, J., Z. Tang, N. Wang, L. Long, and K. Li. 2012. Evaluating a set of reference genes for expression normalization in multiple tissues and skeletal muscle at different development stages in pigs using quantitative real-time polymerase chain reaction. DNA Cell Biol. 31:106-113.   DOI   ScienceOn
22 Cinar, M. U., M. A. Islam, M. Proll, H. Kocamis, E. Tholen, D. Tesfaye, C. Looft, K. Schellander, and M. J. Uddin. 2013. Evaluation of suitable reference genes for gene expression studies in porcine PBMCs in response to LPS and LTA. BMC Res. Notes 6:56.   DOI