Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13385

Genome-wide Association Study of Integrated Meat Quality-related Traits of the Duroc Pig Breed  

Lee, Taeheon (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Sciences, Seoul National University)
Shin, Dong-Hyun (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Sciences, Seoul National University)
Cho, Seoae (C&K genomics, Seoul National University Research Park)
Kang, Hyun Sung (Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University)
Kim, Sung Hoon (Genomic Informatics Center, Hankyong National University)
Lee, Hak-Kyo (Genomic Informatics Center, Hankyong National University)
Kim, Heebal (Department of Agricultural Biotechnology, Animal Biotechnology Major, Research Institute for Agriculture and Life Sciences, Seoul National University)
Seo, Kang-Seok (Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.3, 2014 , pp. 303-309 More about this Journal
Abstract
The increasing importance of meat quality has implications for animal breeding programs. Research has revealed much about the genetic background of pigs, and many studies have revealed the importance of various genetic factors. Since meat quality is a complex trait which is affected by many factors, consideration of the overall phenotype is very useful to study meat quality. For integrating the phenotypes, we used principle component analysis (PCA). The significant SNPs refer to results of the GRAMMAR method against PC1, PC2 and PC3 of 14 meat quality traits of 181 Duroc pigs. The Genome-wide association study (GWAS) found 26 potential SNPs affecting various meat quality traits. The loci identified are located in or near 23 genes. The SNPs associated with meat quality are in or near five genes (ANK1, BMP6, SHH, PIP4K2A, and FOXN2) and have been reported previously. Twenty-five of the significant SNPs also located in meat quality-related QTL regions, these result supported the QTL effect indirectly. Each single gene typically affects multiple traits. Therefore, it is a useful approach to use integrated traits for the various traits at the same time. This innovative approach using integrated traits could be applied on other GWAS of complex-traits including meat-quality, and the results will contribute to improving meat-quality of pork.
Keywords
Genome-wide Association Study; Principle Component Analysis; Meat Quality; Duroc Pig;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barrett, J., B. Fry, J. Maller, and M. Daly. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263-265.   DOI   ScienceOn
2 Andersson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 2:130-138.   DOI   ScienceOn
3 Andersson, L. and M. Georges. 2004. Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5:202-212.   DOI   ScienceOn
4 Aulchenko, Y. S., D. J. de Koning, and C. Haley. 2007. Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177:577-585.   DOI   ScienceOn
5 Davoli, R. and Braglia, S. 2007. Molecular approaches in pig breeding to improve meat quality. Brief. Funct. Genomic. Proteomic. 6:313-321.
6 Duggal, P., E. M. Gillanders, T. N. Holmes, and J. E. Bailey-Wilson. 2008. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics 9:516.   DOI   ScienceOn
7 Fonseca, S., I. Wilson, G. Horgan, and C. Maltin. 2003. Slow fiber cluster pattern in pig longissimus thoracis muscle: implications for myogenesis. J. Anim. Sci. 81:973-983.
8 Gilmour, A., B. Gogel, B. Cullis, R. Thompson, D. Butler, M. Cherry, D. Collins, G. Dutkowski, S. Harding, and K. Haskard. 2009. ASReml user guide release 3.0. VSN International Ltd., UK. 275.
9 Friendly, M. 2002. Corrgrams. Am. Stat. 56:316-324.   DOI   ScienceOn
10 Gabriel, S. B., S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy, B. Blumenstiel, J. Higgins, M. DeFelice, A. Lochner, and M. Faggart. 2002. The structure of haplotype blocks in the human genome. Science 296:2225-2229.   DOI   ScienceOn
11 Gao, J., H. Lin, Z. Song, and H. Jiao. 2008. Corticosterone alters meat quality by changing pre-and postslaughter muscle metabolism. Poult. Sci. 87:1609-1617.   DOI   ScienceOn
12 Goodwin, R. and S. Burroughs. 1995. Genetic evaluation terminal line program results. National Pork Producers Council, Des Moines, IA.
13 Kent, W. J. 2002. BLAT-the BLAST-like alignment tool. Genome Res. 12:656-664.   DOI
14 Hu, Z.-L., C. A. Park, X.-L. Wu, and J. M. Reecy. 2013. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucl. Acids Res. 41:D871-D879.   DOI
15 Imamura, M., S. Maeda, T. Yamauchi, K. Hara, K. Yasuda, T. Morizono, A. Takahashi, M. Horikoshi, M. Nakamura, and H. Fujita. 2012. A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum. Mol. Genet. 21:3042-3049.   DOI   ScienceOn
16 Karasik, D., C. L. Cheung, Y. Zhou, L. A. Cupples, D. P. Kiel, and S. Demissie. 2012. Genome-wide association of an integrated osteoporosis-related phenotype: Is there evidence for pleiotropic genes? J. Bone Miner. Res. 27:319-330.   DOI
17 Rosenvold, K. and H. J. Andersen. 2003. Factors of significance for pork quality-a review. Meat Sci. 64:219-237.   DOI   ScienceOn
18 Ma, J., J. Yang, L. Zhou, Z. Zhang, H. Ma, X. Xie, F. Zhang, X. Xiong, L. Cui, and H. Yang. 2013. Genome-wide association study of meat quality traits in a White Duroc${\times}$Erhualian F2 intercross and Chinese Sutai pigs. PloS one 8:e64047.   DOI
19 Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. W. De Bakker, and M. J. Daly. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575.   DOI   ScienceOn
20 Tsai, L.-C. L. and J. A. Beavo. 2011. The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. Curr. Opin. Pharmacol. 11:670-675.   DOI   ScienceOn
21 Yang, J., W. N. Weedon, S. Purcell, G. Lettre, K. Estrada, C. J. Willer, A. V. Smith, E. Ingelsson, J. R. O'Connell, and M. Mangino. 2011. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19:807-812.   DOI   ScienceOn
22 Tsai, L.-C. L., M. Shimizu-Albergine, and J. A. Beavo. 2011. The high-affinity cAMP-specific phosphodiesterase 8B controls steroidogenesis in the mouse adrenal gland. Mol. Pharmacol. 79:639-648.   DOI   ScienceOn
23 Wimmers, K., E. Murani, M. Te Pas, K. Chang, R. Davoli, J. Merks, H. Henne, M. Muraniova, N. Da Costa, and B. Harlizius. 2007. Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Anim. Genet. 38:474-484.   DOI   ScienceOn
24 Xu, T., W. Huang, X. Zhang, B. Ye, H. Zhou, and S. Hou. 2012. Identification and characterization of genes related to the development of breast muscles in Pekin duck. Mol. Biol. Rep. 39:7647-7655.   DOI
25 Wolfrum, C., E. Asilmaz, E. Luca, J. M. Friedman, and M. Stoffel. 2004. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432:1027-1032.   DOI   ScienceOn
26 Luo, W., D. Cheng, S. Chen, L. Wang, Y. Li, X. Ma, X. Song, X. Liu, W. Li, and J. Liang. 2012. Genome-wide association analysis of meat quality traits in a porcine Large White${\times}$Minzhu intercross population. Int. J. Biol. Sci. 8:580-595.   DOI
27 Tabassum, R., S. Chavali, O. P. Dwivedi, N. Tandon, and D. Bharadwaj. 2008. Genetic variants of FOXA2: risk of type 2 diabetes and effect on metabolic traits in North Indians. J. Hum. Genet. 53:957-965.   DOI
28 De Vries, A., L. Faucitano, A. Sosnicki, and G. Plastow. 2000. The use of gene technology for optimal development of pork meat quality. Food. Chem. 69:397-405.   DOI   ScienceOn