Browse > Article
http://dx.doi.org/10.5713/ajas.2014.14292

Effects of Acarbose Addition on Ruminal Bacterial Microbiota, Lipopolysaccharide Levels and Fermentation Characteristics In vitro  

Yin, Yu-Yang (College of Animal Science and Technology, Nanjing Agricultural University)
Liu, Yu-Jie (College of Animal Science and Technology, Nanjing Agricultural University)
Zhu, Wei-Yun (College of Animal Science and Technology, Nanjing Agricultural University)
Mao, Sheng-Yong (College of Animal Science and Technology, Nanjing Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.27, no.12, 2014 , pp. 1726-1735 More about this Journal
Abstract
This study investigated the effects of acarbose addition on changes in ruminal fermentation characteristics and the composition of the ruminal bacterial community in vitro using batch cultures. Rumen fluid was collected from the rumens of three cannulated Holstein cattle fed forage ad libitum that was supplemented with 6 kg of concentrate. The batch cultures consisted of 8 mL of strained rumen fluid in 40 mL of an anaerobic buffer containing 0.49 g of corn grain, 0.21 g of soybean meal, 0.15 g of alfalfa and 0.15g of Leymus chinensis. Acarbose was added to incubation bottles to achieve final concentrations of 0.1, 0.2, and 0.4 mg/mL. After incubation for 24 h, the addition of acarbose linearly decreased (p<0.05) the total gas production and the concentrations of acetate, propionate, butyrate, total volatile fatty acids, lactate and lipopolysaccharide (LPS). It also linearly increased (p<0.05) the ratio of acetate to propionate, the concentrations of isovalerate, valerate and ammonia-nitrogen and the pH value compared with the control. Pyrosequencing of the 16S rRNA gene showed that the addition of acarbose decreased (p<0.05) the proportion of Firmicutes and Proteobacteria and increased (p<0.05) the percentage of Bacteroidetes, Fibrobacteres, and Synergistetes compared with the control. A principal coordinates analysis plot based on unweighted UniFrac values and molecular variance analysis revealed that the structure of the ruminal bacterial communities in the control was different to that of the ruminal microbiota in the acarbose group. In conclusion, acarbose addition can affect the composition of the ruminal microbial community and may be potentially useful for preventing the occurrence of ruminal acidosis and the accumulation of LPS in the rumen.
Keywords
Acarbose; Ruminal Microbiota; Pyrosequencing; In vitro Fermentation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Packer, E. L., E. H. Clayton, and P. M. V. Cusack. 2011. Rumen fermentation and live weight gain in beef cattle treated with monensin and grazing lush forage. Aust. Vet. J. 89:338-345.   DOI
2 Plaizier, J. C., D. O. Krause, G. N. Gozho, and B. W. McBride. 2008. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 176:21-31.   DOI   ScienceOn
3 Remling, N., S. Riede, P. Lebzien, U. Meyer, M. Holtershinken, S. Kersten, and S. Danicke. 2013. Effects of fumaric acid on rumen fermentation, milk composition and metabolic parameters in lactating cows. J. Anim. Physiol. Anim. Nutr. (In press).
4 Russell, J. B. and G. F. Diez. 1997. The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39:205-234.   DOI
5 Speight, S. M., D. L. Harmon, and J. M. Tricarico. 2007. Application of carbohydrase inhibitors to moderate rumen fermentation: continuous culture evaluation. J. Dairy Sci. 90(Suppl. 1):340 (Abstr).
6 Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Envitron. Microbiol. 73:5261-5267.   DOI   ScienceOn
7 Weathburn, M. W. 1967. Phenol-Hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974.   DOI
8 Zebeli, Q. and B. U. Metzler-Zebeli. 2012. Interplay between rumen digestive disorders and diet-induced in flammation in dairy cattle. Res. Vet. Sci. 93:1099-1108.   DOI   ScienceOn
9 Boone, D. R., R. W. Castenholz, and G. M. Garrity. 2001. Bergey's manual of systematic bacteriology. 2nd Ed. Springer. New York, NY, USA.
10 Baker, G., J. J. Smith, and D. A. Cowan. 2003. Review and reanalysis of domain-specific 16S primers. J. Microbiol. Methods 55:541-555.   DOI   ScienceOn
11 Baker, S. B. and W. H. Summerson. 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 138:535-554.
12 Desnoyers, M., R. S. Giger-Reverdin, G. Bertin, C. Duvaux-Ponter, and D. Sauvant. 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 92:1620-1632.   DOI   ScienceOn
13 Blanch, M., S. Calsamiglia, M. Devant, and A. Bach. 2010. Effects of acarbose on ruminal fermentation, blood metabolites and microbial profile involved in ruminal acidosis in lactating cows fed a high-carbohydrate ration. J. Dairy Res. 77:123-128.   DOI   ScienceOn
14 Cook, N. B., K. V. Nordlund, and G. R. Oetzel. 2004. Environmental influences on claw horn lesions associated with laminitis and subacute ruminal acidosis in dairy cows. J. Dairy Sci. 87(Supp. l): E36-E46.   DOI   ScienceOn
15 Denman, S. E. and C. S. McSweeney, 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582.   DOI   ScienceOn
16 Mao, S. Y., G. Zhang, and W. Y. Zhu. 2007. Effect of disodium fumarate on in vitro rumen fermentation of different substrates and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Asian Australas. J. Anim. Sci. 20:543-549.   과학기술학회마을   DOI
17 Garrett, E. F., K. V. Nordlund, W. J. Goodger, and G. R. Oetzel. 1997. A cross-sectional field study investigating the effect of periparturient dietary management on ruminal pH in early lactation dairy cows. J. Dairy Sci. 80(Suppl. 1):169 (Abstr).
18 Good, I. L. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40(3-4):237-264.   DOI
19 Mao, S. Y., R. Y. Zhang, D. S. Wang, and W. Y. Zhu. 2013. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 24:12-19.   DOI   ScienceOn
20 Krause, K. M. and G. R. Oetzel. 2006. Understanding and preventing subacute ruminal acidosis in dairy herds. A review. Anim. Feed Sci. Technol. 126:215-236.   DOI   ScienceOn
21 McLaughlin, C. L., A. Thompson, K. Greenwood, J. Sherington, and C. Bruce. 2009a. Effect of acarbose on acute acidosis. J. Dairy Sci. 92:2758-2766.   DOI   ScienceOn
22 McLaughlin, C. L., A. Thompson, K. Greenwood, J. Sherington, and C. Bruce. 2009b. Effect of acarbose on milk yield and composition in early-lactation dairy cattle fed a ration to induce subacute ruminal acidosis. J. Dairy Sci. 92:4481-4488.   DOI   ScienceOn
23 Moon, C. D., D. M. Pacheco, W. J. Kelly, S. C. Leahy, D. Li, J. Kopecny, and G. T. Attwood. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int. J. Syst. Evol. Microbiol. 58:2041-2045.   DOI   ScienceOn
24 Nagaraja, T. G., E. E. Bartley, L. R. Fina, and H. D. Anthony. 1978. Relationship of rumen gram-negative bacteria and free endotoxin to lactic acidosis in cattle. J. Anim. Sci. 47:1329-1336.   DOI
25 Qin, W. L. 1982. Determination of rumen volatile fatty acids by means of gas chromatography. J. NJ Agric. Col. 4:110-116.
26 Nagaraja, T. G. and E. C. Titgemeyer. 2007. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J. Dairy Sci. 90(Supp. l):E17-E38.   DOI   ScienceOn
27 Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197.   DOI   ScienceOn