Browse > Article
http://dx.doi.org/10.5713/ajas.2013.13085

Effects of Chitosan on Body Weight Gain, Growth Hormone and Intestinal Morphology in Weaned Pigs  

Xu, Yuanqing (College of Animal Science, Inner Mongolia Agricultural University)
Shi, Binlin (College of Animal Science, Inner Mongolia Agricultural University)
Yan, Sumei (College of Animal Science, Inner Mongolia Agricultural University)
Li, Tiyu (College of Animal Science, Inner Mongolia Agricultural University)
Guo, Yiwei (College of Animal Science, Inner Mongolia Agricultural University)
Li, Junliang (College of Animal Science, Inner Mongolia Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.10, 2013 , pp. 1484-1489 More about this Journal
Abstract
The study was conducted to determine the effects of chitosan on the concentrations of GH and IGF-I in serum and small intestinal morphological structure of piglets, in order to evaluate the regulating action of chitosan on weaned pig growth through endocrine and intestinal morphological approaches. A total of 180 weaned pigs (35 d of age; $11.56{\pm}1.61kg$ of body weight) were selected and assigned randomly to 5 dietary treatments, including 1 basal diet (control) and 4 diets with chitosan supplementation (100, 500, 1,000 and 2,000 mg/kg, respectively). Each treatment contained six replicate pens with six pigs per pen. The experiment lasted for 28 d. The results showed that the average body weight gain (BWG) of pigs was improved quadratically by dietary chitosan during the former 14 d and the later 14 d after weaned (p<0.05). Furthermore, dietary supplementation of chitosan tended to quadratically increase the concentration of serum GH on d 14 (p = 0.082) and 28 (p = 0.087). Diets supplemented with increasing levels of chitosan increased quadratically the villus height of jejunum and ileum on d 14 (p = 0.089, p<0.01) and 28 (p = 0.074, p<0.01), meanwhile, chitosan increased quadratically the ratio of villus height to crypt depth in duodenum, jejunum and ileum on d 14 (p<0.05, p = 0.055, p<0.01) and 28 (p<0.01, p<0.01, p<0.01), however, it decreased quadratically crypt depth in ileum on d 14 (p<0.05) and that in duodenum, jejunum and ileum on d 28 (p<0.01, p<0.05, p<0.05). In conclusion, these results indicated that chitosan could quadratically improve growth in weaned pigs, and the underlying mechanism may due to the increase of the serum GH concentration and improvement of the small intestines morphological structure.
Keywords
Chitosan; Weaned Pig; GH; IGF-I; Small Intestine; Morphological Structure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Huang, R. L., Y. L. Yin, G. Y. Wu, Y. G. Zhang, T. J. Li, L. L. Li, M. X. Li, Z. R. Tang, J. Zhang, B. Wang, J. H. He, and X. Z. Nie. 2005. Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poult. Sci. 84:1383-1388.   DOI
2 Tsukada, K., T. Matsumoto, K. Aizawa, A. Tokoro, R. Naruse, S. Suzuki, and M. Suzuki. 1990. Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Jpn. J. Cancer Res. 81:259-265.   DOI
3 Wang, S. Q., and C. S. Zhang. 2004. Chitin, chitosan and their applications in aquaculture. Feed Res. 5:25-28.
4 Xu, C. L., and Y. Z. Wang. 2005. The applications of chitin in aquaculture. China Feed. 7:30-32.
5 Xu, Y. Q., B. L. Shi, J. L. Li, T. Y. Li, Y. W. Guo, L. X. Tian, X. Z. Fu, and L. Hong. 2012. Effects of chitosan on intestinal flora in weaned pigs. Feed Res. 10:54-56.
6 Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82:1030-1036.   DOI
7 Yao, H. T., S. Y. Huang, and M. T. Chiang. 2006. Effect of chitosan on plasma cholesterol and glucose concentration in streptozotocin-induced diabetic rats. Taiwan J. Agric. Chem. Food Sci. 44:122-132.
8 Yao, H. T., S. Y. Huang, and M. T. Chiang. 2008. A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 46:1525-1534.   DOI   ScienceOn
9 Yin,Y. L., Z. R. Tang, Z. H. Sun, Z. Q. Liu, T. J. Li, R. L. Huang, Z. Ruan, Z. Y. Deng, B. Gao, L. X. Chen, G. Y. Wu, and S. W. Kim. 2008. Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity response in early-weaned piglets. Asian-Aust. J. Anim. Sci. 21:723-731.   과학기술학회마을   DOI
10 Yuan, S. B., and H. Chen. 2012. Effects of dietary supplementation of chitosan on growth performance and immune index in ducks. Afr. J. Biotechnol. 11:3490-3495.
11 Pell, J. M., and P. C. Bates. 1990. The nutritional regulation of growth hormone action. Nutr. Res. Rev. 3:163-192.   DOI   ScienceOn
12 Pluske, J. R., I. H. Williams, and F. X. Aherne. 1996a. Maintenance of villus height and crypt depth in piglets by providing continuous nutrition after weaning. Anim. Sci. 62: 131-144.   DOI
13 Pluske, J. R., I. H. Williams, and F. X. Aherne. 1996b. Villus height and crypt depth in piglets in response to increases in the intake of cows' milk after weaning. Anim. Sci. 62:145-158.   DOI
14 Smith, F., J. E. Clark, B. L. Overman, C. C. Tozel, J. H. Huang, J. E. Rivier, A. T. Blisklager, and A. J. Moeser. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 298:352-363.   DOI   ScienceOn
15 Pusateri, A. E., J. B. Holcomb, B. S. Kheirabadi, H. B. Alam, C. E.Wade, and K. L. Ryan. 2006. Making sense of the preclinical literature on advanced hemostatic products. J. Trauma-Injury Infection and Critical Care 60:674-682.   DOI
16 SAS. 2003. SAS user's guide: Statistics. Version 9.0. SAS Institute., Cary, NC.
17 Shi, B. L., D. F. Li, X. S. Piao, and S. M. Yan. 2005. Effects of chitosan on growth performance and energy and protein utilisation in broiler chickens. Br. Poult. Sci. 46:516-519.   DOI   ScienceOn
18 Tang, Z. R., Y. L. Yin, C. M. Nyachoti, R. L. Huang, T. J. Li, C. B. Yang, X. J. Yang, J. Gong, J. Peng, D. S. Qi, J. J. Xing, Z. H. Sun, and M. Z. Fan. 2005. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol. 28:430-441.   DOI   ScienceOn
19 Torzsas, T. L, C. W. Kendall, M. Sugano, Y. Iwamoto, and A. V. Rao. 1996. The influence of high and low molecular weight chitosan on colonic cell proliferation and aberrant crypt foci development in CF1 mice. Food Chem. Toxicol. 34:73-77.   DOI   ScienceOn
20 Liao, F. H., M. J. Shieh, N. C. Chang, and Y. W. Chien. 2007. Chitosan supplementation lowers serum lipids and maintains normal calcium, magnesium, and iron status in hyperlipidemic patients. Nutr. Res. 27:146-151.   DOI   ScienceOn
21 Limam, Z., S. Selmi, S. Sadok, and A. El-abed. 2011. Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physicochemical properties. Afr. J. Biotechnol. 10:640-647.
22 Montagne, L., J. R. Pluske, and D. J. Hampson. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108:95-117.   DOI   ScienceOn
23 Liu, G. M., Y. Wei, Z. S. Wang, D. Wu, and A. G. Zhou. 2008. Effects of dietary supplementation with cysteamine on growth hormone receptor and insulin-like growth factor system in finishing pigs. J. Agric. Food Chem. 56:5422-5427.   DOI   ScienceOn
24 Liu, P., X. S. Piao, S. W. Kim, L. Wang, Y. B. Shen, H. S. Lee, and S. Y. Li. 2008. Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of Escherichia coli and Lactobacillus in weaning pigs. J. Anim. Sci. 86:2609-2618.   DOI   ScienceOn
25 Moon, J. S., H. K. Kim, H. C. Koo, Y. S. Joo, H. M. Nam, Y. H. Park, and M. I. Kang. 2007. The antibacterial and immunostimulative effect of chitosan-oligosaccharides against infection by staphylococcus aureus isolated from bovine mastitis. Appl. Microbiol. Biotechnol. 75:989- 998.   DOI   ScienceOn
26 Nabuurs, M. J. A., A. Hoogendoorn, E. J. Van Der Molen, and A. L. M. Van Osta. 1993. Villus height and crypt depth in weaned and unweaned pigs, reared under various circumstances in the Netherlands. Res. Vet. Sci. 55:78-84.   DOI   ScienceOn
27 NRC. 1998. Nutrient requirements of swine. 10th ed. National Academic Press, Washington, DC.
28 Peace, R. M., J. Campbell, J. Polo, J. Crenshaw, L. Russell, and A. J. Moeser. 2011. Spray-dried porcine plasma influences intestinal barrier function, inflammation, and diarrhea in weaned pigs. J. Nutr. 141:1312-1317.   DOI   ScienceOn
29 Huang, R. L., Y. L. Yin, M. X. Li, G. Y. Wu, T. J. Li, L. L. Li, C. B. Yang, J. Zhang, B. Wang, Z. Y. Deng, Y. G. Zhang, Z. R. Tang, P. Kang, and Y. M. Guo. 2007. Dietary oligochitosan supplementation enhances immune status of broilers. J. Sci. Food Agric. 87:153-159.   DOI   ScienceOn
30 Benhabiles, M. S., R. Salah, H. Lounici, N. Drouiche, M. F. A. Goosen, and N. Mameri. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29:48-56.   DOI   ScienceOn
31 Crini, G. 2005. Recent developments in polysaccharide-based materials used as absorbents in wastewater treatment. Prog. Polym. Sci. 30:38-70.   DOI   ScienceOn
32 Hu, C. H., L. Y. Gu, Z. S. Luan, J. Song, and K. Zhu. 2012. Effects of montmorillonite-zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim. Feed Sci. Technol. 177:108-115.   DOI   ScienceOn
33 Khambualai, O., K. Yamauchi, S. Tangtaweewipat, and B. Cheva-Isarakul. 2009. Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br. Poult. Sci. 50: 592-597.   DOI   ScienceOn
34 Kim, J. C., C. F. Hansen, B. P. Mullana, and J. R. Pluske. 2012. Nutrition and pathology of weaner pigs: nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol. 173:3-16.   DOI   ScienceOn
35 Knaul, J. Z., S. M. Hudson, and K. A. M. Creber. 1999. Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism. J. Polym. Sci. Part B, Polym. Phys. 37:1079-1094.   DOI   ScienceOn
36 Koide, S. S. 1998. Chitin-chitosan: properties, benefits and risks. Nutr. Res. 18:1091-1101.   DOI   ScienceOn
37 Li, H. Y., S. M. Yan, B. L. Shi, and X. Y. Guo. 2009. Effect of chitosan on nitric oxide content and inducible nitric oxide synthase activity in serum and expression of inducible nitric oxide synthase mRNA in small intestine of broiler chickens. Asian-Aust. J. Anim. Sci. 22:1048-1053.   과학기술학회마을   DOI
38 Hall, T. R., S. Harvey, and C. G. Scanes. 1986. Control of growth hormone secretion in the vertebrates: a comparative survey. Comp. Biochem. Physiol. 84A:231-253.
39 Dai, T., G. P. Tegos, M. Burkatovskaya, A. P. Castano, and M. R. Hamblin. 2009. Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrob. Agents Chemother. 53:393-400.   DOI   ScienceOn
40 Goiri, I., L. M. Oregui, and A. Garcia-Rodriguez. 2010. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. J. Anim. Sci. 88:749-755.   DOI   ScienceOn
41 Hampson, D. J. 1986. Alterations in piglet small intestinal structure at weaning. Res. Vet. Sci. 40:32-40.
42 Han, X. Y., W. L. Du, Q. C. Huang, Z. R. Xu, and Y. Z. Wang. 2012. Changes in small intestinal morphology and digestive enzyme activity with oral administration of copper-loaded chitosan nanoparticles in rats. Biol. Trace Elem. Res. 145:355-360.   DOI   ScienceOn
43 Hou, Y. Q., Y. L. Liu, J. Hu, and W. H. Shen. 2006. Effects of lactitol and tributyrin on growth performance, small intestinal morphology and enzyme activity in weaned pigs. Asian-Aust. J. Anim. Sci. 19:1470-1477.   과학기술학회마을   DOI