Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12055

Effect of Rapid Chilling on Beef Quality and Cytoskeletal Protein Degradation in M. longissimus of Chinese Yellow Crossbred Bulls  

Mao, Yanwei (College of Food Science and Engineering, Shandong Agricultural University)
Zhang, Yimin (College of Food Science and Engineering, Shandong Agricultural University)
Liang, Rongrong (College of Food Science and Engineering, Shandong Agricultural University)
Ren, Lulu (College of Food Science and Engineering, Shandong Agricultural University)
Zhu, He (College of Food Science and Engineering, Shandong Agricultural University)
Li, Ke (College of Food Science and Engineering, Shandong Agricultural University)
Zhu, Lixian (College of Food Science and Engineering, Shandong Agricultural University)
Luo, Xin (College of Food Science and Engineering, Shandong Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.8, 2012 , pp. 1197-1204 More about this Journal
Abstract
The objective of this study was to investigate the effect of rapid chilling (RC) on beef quality and the degradation of cytoskeletal proteins. Twenty Chinese Yellow crossbred bulls were selected and randomly divided into two groups. RC and conventional chilling (CC) were applied to left and right sides of the carcasses respectively after slaughtering. To determine whether electrical stimulation (ES) treatment can alleviate the potential hazard of RC on meat quality, ES was applied to one group. The effects of RC and ES were determined by meat color, shear force and cytoskeletal protein degradation postmortem (PM). The results showed that RC decreased beef tenderness at 1 d and 3 d postmortem, but had no detrimental effect on meat color. Western blotting showed that RC decreased the degradation rate of desmin and troponin-T, but the effects weakened gradually as postmortem aging extended. Degradation rates of both desmin and troponin-T were accelerated by ES. The combination of RC and ES could improve beef color, accelerate degradation rate of cytoskeletal protein and improve beef tenderness.
Keywords
Beef; Rapid Chilling; Electrical Stimulation; Cytoskeletal Protein Degradation; Chinese Yellow Crossbred Bulls;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wheeler, T. L. and M. Koohmaraie. 1994. Prerigor and postrigor changes in tenderness of ovine longissimus muscle. J. Anim. Sci. 72:1232-1238.
2 Wheeler, T. D. and M. Koomaraie. 1999. The extent of proteolysis is independent of sarcomere length in lamb longissimus and psoas major. J. Anim. Sci. 77:2444-2451.
3 White, A., A. O'Sullivan, D. J. Troy and E. E. O'Neill. 2006a. Effects of electrical stimulation, chilling temperature and hot-boning on the tenderness of bovine muscles. Meat Sci. 73: 196-203.   DOI   ScienceOn
4 White, A., A. O'Sullivan, D. J. Troy and E. E. O'Neill. 2006b. Manipulation of the pre-rigor glycolytic behaviour of bovine M. longissimus dorsi in order to identify causes of inconsistencies in tenderness. Meat Sci. 73:151-156.   DOI   ScienceOn
5 White, A., A. O'Sullivan, E. E. O'Neill and D. J. Troy. 2006c. Manipulation of the pre-rigor phase to investigate the significance of proteolysis and sarcomere length in determining the tenderness of bovine M. longissimus dorsi. Meat Sci. 73:204-208.   DOI   ScienceOn
6 McGinnisa, D. S., J. L. Aalhusa, B. Chabota, C. Gariepyb and S. D. M. Jonesa. 1994. A modified hot processing strategy for beef: reduced electrical energy consumption in carcass chilling. Food Res. Int. 27:527-535.   DOI   ScienceOn
7 Miller, M. F., M. A. Carr, C. B. Ramsey, K. L. Crockett and L. C. Hoover. 2001. Consumer thresholds for establishing the value of beef tenderness. J. Anim. Sci. 79:3062-3068.
8 Olson, D. G. and F. C. Parrish. 1977. Relationship of myofibril fragmentation index to measures of beef steak tenderness. J. Food Sci. 42:506-509.   DOI
9 Olsson, U., C. Hertzman and E. Tornburg. 1994. The influence of low temperature, type of muscle and electrical stimulation on the course of rigor mortis, ageing and tenderness of beef muscles. Meat Sci. 37:115-131.   DOI   ScienceOn
10 Polidori, P., S. Lee, R. G. Kauffman and B. B. Marsh. 1999. Low voltage electrical stimulation of lamb carcasses: effects on meat quality. Meat Sci. 53:179-182.   DOI   ScienceOn
11 Sun, Q. L., X. Luo, Y. W. Mao and Y. M. Zhang. 2008. Effect of electrical stimulation and delay chilling on the degradation of the Troponin-T from myofibrillar in the post slaughter beef. Transactions of the CSAE 24:262-266.
12 Rhee, M. S., Y. C. Ryu, J. Y. Imm and B. C. Kim. 2000. Combination of low voltage electrical stimulation and early postmortem temperature conditioning on degradation of myofibrillar proteins in Korean native cattle (Hanwoo). Meat Sci. 55:391-396.   DOI   ScienceOn
13 Savell, J. W., S. L. Mueller and B. E. Baird. 2005. The chilling of carcasses. Meat Sci. 70:449-459.   DOI   ScienceOn
14 Sheridan, J. J. 1990. The ultra-rapid chilling of lamb carcasses. Meat Sci. 28:31-50.   DOI   ScienceOn
15 Van Moeseke, W., S. De Smet, E. Claeys and D. Demeyer. 2001. Very fast chilling of beef: effects on meat quality. Meat Sci. 59:31-37.   DOI   ScienceOn
16 Hwang, I. H., B. Y. Park, S. H. Cho and J. M. Lee. 2004. Effects of muscle shortening and proteolysis on Warner-Bratzler shear force in beef longissimus and semitendinosus. Meat Sci. 68: 497-505.   DOI   ScienceOn
17 Janz, J. A. M., J. L. Aalhus and M. A. Price. 2001. Blast chilling and low voltage electrical stimulation influences on bison (Bison bison bison) meat quality. Meat Sci. 57:403-411.   DOI   ScienceOn
18 Joseph, R. L. 1996. Very fast chilling of beef and tenderness-a report from an EU concerted action. Meat Sci. 43(Supplement 1):217-227.   DOI   ScienceOn
19 Koohmaraie, M., S. C. Seidemann, J. E. Schollmeyer, T. R. Dutson and J. D. Crouse. 1987. Effect of post-mortem storage on Ca++-dependent proteases, their inhibitor and myofibril fragmentation. Meat Sci. 19:187-196.   DOI   ScienceOn
20 Li, C. B., Y. J. Chen, X. L. Xu, M. Huang, T. J. Hu and G. H. Zhou. 2006. Effects of low-voltage electrical stimulation and rapid chilling on meat quality characteristics of Chinese Yellow crossbred bulls. Meat Sci. 72:9-17.   DOI   ScienceOn
21 Locker, R. H. and C. J. Hagyard. 1963. A cold shortening effect in beef muscles. J. Sci. Food Agric. 14:787-793.   DOI
22 Luo, X., Y. Zhu and G. H. Zhou. 2008. Electron microscopy of contractile bands in low voltage electrical stimulation beef. Meat Sci. 80:948-951.   DOI   ScienceOn
23 Macbride, M. A. and F. C. Parrish. 1977. The 30,000-dalton component of tender bovine longissimus muscle. J. Food Sci. 42:1627-1629.   DOI
24 Marsh, B. B. and N. G. Leet. 1966. Studies in Meat Tenderness. III. The effects of cold shortening on tenderness. J. Food Sci. 31:450-459.   DOI
25 Bowling, R. A., T. R. Dutson, G. C. Smith and J. W. Savell. 1987. Effects of cryogenic chilling on beef carcass grade, shrinkage and palatability characteristics. Meat Sci. 21:67-72.   DOI   ScienceOn
26 Davey, C. L. and K. J. Garnett. 1980. Rapid freezing, frozen storage and the tenderness of lamb. Meat Sci. 4:319-322.   DOI   ScienceOn
27 Geesink, G. H., A. D. Bekhit and R. Bickerstaffe. 2000. Rigor temperature and meat quality characteristics of lamb longissimus muscle. J. Anim. Sci. 78:2842-2848.
28 Hildrum, K. I., M. Solvang, B. N. Nilsen, T. Frøystein and J. Berg. 1999. Combined effects of chilling rate, low voltage electrical stimulation and freezing on sensory properties of bovine M. longissimus dorsi. Meat Sci. 52:1-7.   DOI   ScienceOn
29 Ho, C. Y., M. H. Stromer and R. M. Robson. 1996. Effect of electrical stimulation on postmortem titin, nebulin, desmin, and troponin-T degradation and ultrastructural changes in bovine longissimus muscle. J. Anim. Sci. 74:1563-1575.
30 Ho, C. Y., M. H. Stromer and R. M. Robson. 1994. Identification of the 30 kDa polypeptide in postmortem skeletal muscle as a degradation product of troponin-T. Biochimie 76:369-375.   DOI   ScienceOn
31 Ho, C. Y., M. H. Stromer, G. Rouse and R. M. Robson. 1997. Effects of electrical stimulation and postmortem storage on changes in titin, nebulin, desmin, troponin-T, and muscle ultrastructure in Bos indicus crossbred cattle. J. Anim. Sci. 75: 366-376.
32 Huff Lonergan, E., T. Mitsuhashi, F. C. Parrish Jr and R. M. Robson. 1996. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting comparisons of purified myofibrils and whole muscle preparations for evaluating titin and nebulin in postmortem bovine muscle. J. Anim. Sci. 74: 779-785.
33 Huff Lonergan, E., W. Zhang and S. M. Lonergan. 2010. Biochemistry of postmortem muscle-Lessons on mechanisms of meat tenderization. Meat Sci. 86:184-195.   DOI   ScienceOn
34 Aalhus, J. L., W. M. Robertson, M. E. R. Dugan and D. R. Best. 2002. Very fast chilling of beef carcasses. Can. J. Anim. Sci. 82:59-67.   DOI   ScienceOn
35 Aalhus, J. L., S. D. M. Jones, S. Lutz, D. R. Best and W. M. Robertson. 1994. The efficacy of high and low voltage electrical stimulation under different chilling regimes. Can. J. Anim. Sci. 74:433-442.   DOI   ScienceOn