Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11246

Red Deer Antler Extract Accelerates Hair Growth by Stimulating Expression of Insulin-like Growth Factor I in Full-thickness Wound Healing Rat Model  

Yang, Zhi Hong (Colloge of life science, Huzhou University)
Gu, Li Juan (Colloge of life science, Huzhou University)
Zhang, Dong Liang (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
Li, Zheng (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
Li, Jing Jie (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
Lee, Mi-Ra (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
Wang, Chun Yan (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
Wang, Zhen (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
Cho, Jeong-Hee (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
Sung, Chang-Keun (Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.5, 2012 , pp. 708-716 More about this Journal
Abstract
In order to investigate and evaluate the effects of red deer antlers on hair growth in the full-thickness wound healing model, Sprague-Dawley rats were given incision wounds through the full thickness of their dorsal skin and deer antler was applied for 40 days. At specified intervals thereafter (4, 8, 16, 32 and 40 days), the animals were sacrificed and the wound site skins were excised, processed, and sectioned. At post-injury days 16, 32 and 40, longer and more active new hair appeared around the healing wound of antler-treated skin. Histological studies showed that the antler extract markedly increases the depth, size, and number of hair follicles. Expression of IGF-I (insulin-like growth factor) mRNA was detected by RT-PCR and real time RT-PCR. The result showed that the expression of IGF-I (days 16, 32, and 40) was obviously up-regulated in antler-treated skins compared to control skins. Similar results were seen in the ELISA analysis to quantify the IGF-I expression. These results support the notion that wound healing can cause hair growth by enhancing the expression of IGF-I. Deer antler extract appears to have the potential to promote hair growth and could be used in hair growth products.
Keywords
Hair Growth; Wound Healing; Growth Factors; IGF-I; Wingless-type MMTV Integration Site Family (Wnt);
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Francis, S. M. and J. M. Suttie. 1998. Detection of growth factors and proto-oncogene mRNA in the growing tip of red deer (Cervus elaphus) antler using reverse-transcriptase polymerase chain reaction (RT-PCR). J. Exp. Zool. 281:36-42.   DOI   ScienceOn
2 Gu, L. J., E. Y. Mo, Z. H. Yang, Z. M. Fang, B. S. Sun, C.Y. Wang, X. M. Zhu, J. F. Bao and C. K. Sung. 2008. Effects of red deer antlers on cutaneous wound healing in full-thickness rat models. Asian-Aust. J. Anim. Sci. 21:277-290.   DOI
3 Gu, L. J., E. Y. Mo, X. M. Zhu, X. Q. Jia, Z. M. Fang, B. S. Sun and C. K. Sung. 2008. Analysis of gene expression in four parts of the red-deer antler using DNA chip microarray technology. Anim. Biol. 58:67-90.   DOI
4 Ha, Y. W., B. T. Jeon, S. H. Moon, H. Toyoda, T. Toida, R. J. Linhardt and Y. S. Kim. 2005. Characterization of heparan sulfate from the unossified antler of Cervus elaphus. Carbohydr. Res. 340:411-416.   DOI   ScienceOn
5 Hardy, M. H. 1992. The secret life of the hair follicle. Trends Genet. 8:55-61.   DOI
6 Ito, M., Y. Liu, Z. Yang, J. Nguyen, F. Liang, R. J. Morris and G. Cotsarelis. 2005. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 11:1351-1354.   DOI   ScienceOn
7 Kulessa, H., G. Turk and B. L. Hogan. 2000. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 19:6664-6674.   DOI   ScienceOn
8 Beaudoin, G. M., J. M. Sisk, P. A. Coulombe and C. C. Thompson. 2005. Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proc. Natl. Acad. Sci. USA. 102: 14653-14658.   DOI   ScienceOn
9 Benn, S. I., J. S. Whitsitt, K. N. Broadley, L. B. Nanney, D. Perkins, L. He, M. Patel, J. R. Morgan, W. F. Swain and J. M. Davidson. 1996. Particle-mediated gene transfer with transforming growth factor-beta1 cDNAs enhances wound repair in rat skin. J. Clin. Invest. 98:2894-2902.   DOI   ScienceOn
10 Cadigan, K. M. and R. Nusse. 1997. Wnt signaling: a common theme in animal development. Genes Dev. 11:3286-3305.   DOI   ScienceOn
11 Chan, J. C., D. A. Duszczyszyn, F. J. Castellino and V. A. Ploplis. 2001. Accelerated skin wound healing in plasminogen activator inhibitor-1-deficient mice. Am. J. Pathol. 159:1681-1688.   DOI   ScienceOn
12 Suttie, J. M., P. F. Fennessy, I. D. Corson, F. J. Laas, S. F. Crosbie, J. H. Butler and P. D. Gluckman. 1989. Pulsatile growth hormone, insulin-like growth factors and antler development in red deer (Cervus elaphus scoticus) stags. J. Endocrinol. 121:351-360.   DOI   ScienceOn
13 Sadighi, M. 1994. Effect of insulin-like growth factor-I (IGF-I) and IGF-II on the growth of antler cells in vitro. J. Endocrinal. 143:461-469.   DOI   ScienceOn
14 Safer, J. D., T. M. Crawford and M. F. Holick. 2005. Topical thyroid hormone accelerates wound healing in mice. Endocrinology 146:4425-4430.   DOI   ScienceOn
15 Sun, Z. Y., J. S. Diao, S. Z. Guo and G. Q. Yin. 2009. A very rare complication: new hair growth around healing wounds. J. Int. Med. Res. 37:583-586.   DOI   ScienceOn
16 Kurtz, C. A., T. G. Loebig, D. D. Anderson, P. J. DeMeo and P. G. Campbell. 1999. Insulin-like growth factor I accelerates functional recovery from Achilles tendon injury in a rat model. Am. J. Sports Med. 27:363-369
17 Tang, L., O. Bernardo, C. Bolduc, H. Lui, S. Madani and J. Shapiro. 2003. The expression of insulin-like growth factor 1 in follicular dermal papillae correlates with therapeutic efficacy of finasteride in androgenetic alopecia. J. Am. Acad. Dermatol. 49:229-233.   DOI   ScienceOn
18 Weger, N. and T. Schlake. 2005. IGF-I signalling controls the hair growth cycle and the differentiation of hair shafts. J. Invest. Dermatol. 125:873-882.   DOI   ScienceOn
19 Wodarz, A. and R. Nusse. 1998. Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol. 14:59-88.   DOI   ScienceOn
20 Messenger, A. G. and J. Rundegren. 2004. Minoxidil: mechanisms of action on hair growth. Br. J. Dermatol. 150:186-194.   DOI   ScienceOn
21 Millar, S. E., K. Willert, P. C. Salinas, H. Roelink, R. Nusse, D. J. Sussman and G. S. Barsh, 1999. WNT signaling in the control of hair growth and structure. Dev. Biol. 207:133-149.   DOI   ScienceOn
22 Plikus, M. V., J. A. Mayer, D. de la Cruz, R. E. Baker, P. K. Maini, R. Maxson and C. M. Chuong. 2008. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451:340-344.   DOI   ScienceOn
23 Otomo, S. 2002. Hair growth effect of minoxidil. Nippon Yakurigaku Zasshi 119:167-174.   DOI   ScienceOn
24 Philpott, M. P., D. A. Sanders and T. Kealey. 1994. Effects of insulin and insulin-like growth factors on cultured human hair follicles: IGF-I at physiologic concentrations is an important regulator of hair follicle growth in vitro. J. Invest. Dermatol. 102:857-861.   DOI   ScienceOn
25 Pita-Thomas, W., C. Fernandez-Martos, M. Yunta, R. M. Maza, R. Navarro-Ruiz, M. J. Lopez-Rodriguez, D. Reigada, M. Nieto-Sampedro and M. Nieto-Diaz. 2010. Gene expression of axon growth promoting factors in the deer antler. PLoS. One. 5: e15706.   DOI   ScienceOn
26 Reddy, S., T. Andl, A. Bagasra, M. M. Lu, D. J. Epstein, E. E. Morrisey and S. E. Millar. 2001. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev. 107:69-82.   DOI   ScienceOn
27 Reya, T. and H. Clevers. 2005. Wnt signalling in stem cells and cancer. Nature 434:843-850.   DOI   ScienceOn
28 Rudman, S. M., M. P. Philpott, G. A. Thomas and T. Kealey. 1997. The role of IGF-I in human skin and its appendages: morphogen as well as mitogen? J. Invest. Dermatol. 109:770-777.   DOI   ScienceOn
29 Dicks, P., C. J. Morgan, P. J. Morgan, D. Kelly and L. M. Williams. 1996. The localisation and characterisation of insulin-like growth factor-I receptors and the investigation of melatonin receptors on the hair follicles of seasonal and non-seasonal fibre-producing goats. J. Endocrinol. 151:55-63.   DOI   ScienceOn
30 Fathke, C., L. Wilson, K. Shah, B. Kim, A. Hocking, R. Moon and F. Isik. 2006. Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol. 7:4.   DOI