Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12020

Effects of Dietary Potential Acid Production Value on Productivity in Dairy Cows  

Kim, E.T. (Division of Applied Life Science (BK21 program), IALS Graduate School of Gyeongsang National University)
Lee, S.S. (Division of Applied Life Science (BK21 program), IALS Graduate School of Gyeongsang National University)
Kim, H.J. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Song, J.Y. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Kim, C.H. (School of Animal Life and Environment Science, Hankyong National University)
Ha, Jong-K. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.5, 2012 , pp. 653-658 More about this Journal
Abstract
This study was conducted to estimate the potential acid production value (PAPV) of major diets and to determine the relationship between dietary PAPV and dairy production traits. Estimation of PAPV of major cattle feeds was based on an in vitro technique, which determined the degree of Ca dissociation from $CaCO_3$. Data on feeds and production traits were collected on 744 multiparous lactating Holstein dairy cows from five different farms. Grains had high PAPV with variable protein sources and by-products. High PAPV feedstuffs had a higher total gas production and lower pH compared to those with low PAPV. Dietary PAPV had a positive correlation with intake of dry matter, NDF, ADF, milk yield and milk solid production but a negative correlation with milk protein and milk fat concentration. Current results indicate that dietary PAPV can be utilized in predicting dairy production traits.
Keywords
Potential Acid Production Value (PAPV); TMR; Metabolic Disease; Ruminal Fermentation; Milk Yield; Dairy Cow;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, Y. J., S. S. Lee, J. Y. Song, N. J. Choi, H. G. Sung, S. G. Yun and J. K. Ha. 2003. Effects of dietry acidogenicity values on rumen fermentation characteristics and nutrients digestibility. Asian-Aust. J. Anim. Sci. 16:1625-1633.   DOI
2 Clark, P. W. and L. E. Armentano. 1993. Effectiveness of neutral detergent fiber in whole cottonseed and dried distillers grains compared with alfalfa haylage. J. Dairy Sci. 76:2644-2650.   DOI   ScienceOn
3 Clark, P. W. and L. E. Armentano. 1997. Replacement of alfalfa NDF with a combination of nonforage fiber sources. J. Dairy Sci. 80:675-680.   DOI   ScienceOn
4 Crawford, R. J. Jr., B. J. Shriver, G. A. Varga and W. H. Hoover. 1983. Buffer requirements for maintenance of pH during fermentation of individual feeds in continuous cultures. J. Dairy Sci. 66:1881-1890.   DOI
5 Depies, K. K. and L. E. Armentano. 1995. Partial replacement of alfalfa fiber with fiber from ground corn cobs or wheat middlings. J. Dairy Sci. 78:1328-1335.   DOI   ScienceOn
6 Dewhurst, R. J., D. Wadhwa, L. P. Borgida and W. J. Fisher. 2001. Rumen acid production from dairy feeds. 1. Effects on feed intake and milk production of dairy cows offered grass or corn silages. J. Dairy Sci. 84:2721-2729.   DOI   ScienceOn
7 Dunlop, R. H. 1972. Pathogenisis of ruminant lactic acidosis. Adv. Vet. Sci. Comp. Med. 259-302.
8 Smith, W. R., I. Yu and R. E. Hungate. 1973. Factors affecting celluloysis by Rminococcus albus. J. Bacteriol. 114:729-737.
9 Song, J. Y. 2005. Standardization of feed acidogenicity value (AV) and effect of different AV diets on rumen fermentation characteristics. (A Thesis For the Degree of Master of Science)
10 Van Soest, P. J. and J. B. Robertson. 1985. Analysis of forages and fibrous foods. AS 613 Manual, Dep. Anim. Sci., Cornell Univ., Ithaca, NY, USA.
11 Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI   ScienceOn
12 Van Soest, P. J. 1994. Nutritional ecology of the ruminant, Second Edition. Cornell University Press, Ithaca, New York, USA.
13 Wadhwa, D., L. P. Borgida, M. S. Dhanoa and R. J. Dewhurst. 2001b. Rumen acid production from dairy feeds. 2. Effects of diets based on corn silage on feed intake and milk yield. J. Dairy Sci. 84:2730-2737.   DOI   ScienceOn
14 Jasaitis, D. K., J. E. Wohlt and J. L. Evans. 1987. Influence of feed ion content on buffering capacity of ruminant feedstuffs in vitro. J. Dairy Sci. 70:1391-1403.   DOI
15 Wadhwa, D., N. F. Beck, L. P. Borgida, M. S. Dhanoa and R. J. Dewhurst. 2001a. Development of a simple in vitro assay for estimating net rumen acid load from diet ingredients. J. Dairy Sci. 84:1109-1117.   DOI   ScienceOn
16 Welch, J. G. and A. M. Smith. 1969. Influence of forage quality on rumination time in sheep. J. Anim. Sci. 28:813-818.
17 Fondevilla, M., C. Castrillo, J. A. Guada and J. Balcells. 1994. Effect of ammonia treatment and carbohydrate supplementation of barley straw on rumen liquid characteristics and substrate degradation by sheep. Anim. Feed Sci. Technol. 50:137-155.   DOI   ScienceOn
18 Lee, H. J., S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim and K. J. Kim. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci. 16:1143-1150.   DOI
19 Mertens, D. R. 1994. Regulation of forage intake. Page 450 in Forage Quality, Evaluation, and Utilization (Ed. G. C. Fehey, Jr.). Am. Soc. Agron., Madison, WI, USA.
20 Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71:2070-2107.   DOI
21 NRC. 2001. Nutrient requirements of dairy cattle, 7th ed. National Academy Press, Washington, DC, USA.
22 Oliveira, L. A., C. Jean-Blain, S. Komisarczuk-Bony, A. Durix and C. Durier. 1997. Microbial thiamin metabolism in the rumen simulating fermenter (RUSITEC): the effect of acidogenic conditions, a high sulfur level and added thiamin. Br. J. Nutr. 78:599-613.   DOI   ScienceOn
23 Playne, M. L. and P. McDonald. 1966. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 17:264-268.   DOI
24 Poore, M. H., J. A. Moore, R. S. Swingle, T. P. Eck and W. H. Brown. 1991. Wheat straw or alfalfa hay in diets with 30% neutral detergent fiber for lactating Holstein cows. J. Dairy Sci. 74:3152-3159.   DOI   ScienceOn
25 Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 11:1119-1122.
26 SAS Institute, Inc. 1995. SAS user's guide: Statistics. SAS Inst. Inc. Cary, NC.
27 Allen, M. S. 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 80:1447-1462.   DOI   ScienceOn
28 AOAC. 1990. Official methods of analysis. 14th ed. Assoc. Offic. Anal. Chem., Washington DC, USA.
29 Armentano, L. E. and M. Pereira. 1997. Measuring effectiveness of fiber by animal response trials. J. Dairy Sci. 80:1416-1425.   DOI   ScienceOn
30 Ash, R. W. 1959. Inhibition and excitation of reticulo-rumen contractions following the introduction of acids into the rumen and abomasum. J. Physiol. 147:58-73.   DOI