Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11266

The Influence of Dietary Calcium and Phosphorus Imbalance on Intestinal NaPi-IIb and Calbindin mRNA Expression and Tibia Parameters of Broilers  

Li, Jianhui (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Yuan, Jianmin (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Guo, Yuming (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Sun, Qiujuan (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Hu, Xiaofei (Henan Key Laboratory for Animal Immunology, Henan Academy of Agricultural Science)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.4, 2012 , pp. 552-558 More about this Journal
Abstract
A $2{\times}2$ factorial experiment was conducted to study the effect of dietary calcium and non-phytate phosphorus (nPP) imbalance on calbindin and NaPi-IIb mRNA levels in the small intestine and tibia parameters of broiler chicks. One hundred and forty four 1-d-old Arbor Acres male broiler chicks were divided into four treatments consisted of six replicates with six chicks each. The two dietary calcium levels were 1.10% and 0.60%, and two dietary nPP levels were 0.50% and 0.27%. Results showed that a high Ca/nPP ratio diet (4.07:1) significantly depressed feed intake and weight gain of broilers (p<0.05), but a lower Ca:nPP ratio (1.2:1) had no influence (p>0.05). Low-Ca with low-P diet resulted in low tibia minerals and tibia breaking strength of broilers, and all the tibia parameters were further decreased when the dietary ratio of Ca to P was relative higher. Low dietary Ca or P up-regulated the calbindin and NaPi-IIb mRNA expression levels. Low Ca with normal P diet up-regulated duodenal calbindin mRNA expression level to the greatest extent. Low P with a normal Ca diet significantly enhanced NaPi-IIb mRNA expression level to the highest extent. These results suggest that the calbindin and NaPi-IIb mRNA expression were enhanced by the imbalance between dietary Ca and nPP, and their expression were not only influenced by Ca or nPP level, but also the ratio of Ca:nPP.
Keywords
Broilers; Calbindin; Calcium; NaPi-IIb; Phosphorus; Tibia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, Z. R., Tania. Archbold, C. B. Yang and M. Z. Fan. 2008. Dietary true digestible calcium to phosphorus ratio affects phosphorus utilization and renal sodium and phosphate cotransporter gene expressions in post-weaned pigs. FASEB J. 22(Meeting Abstract Supplement):691-695.   DOI   ScienceOn
2 Xie, M., S. X. Wang, S. S. Hou and W. Huang. 2009. Interaction between dietary calcium and non-phytate phosphorus on growth performance and bone ash in early White Pekin Ducklings. Anim. Feed Sci. Technol. 151:161-166.   DOI   ScienceOn
3 Li, J. H., J. M. Yuan, Y. M. Guo, Y. Yang, S. D. Bun, X. F. Hu and D. Yi. 2011. The effect of dietary nutrient density on growth performance, physiological parameters, and small intestinal type IIb sodium phosphate co-transporter expression in broilers. J. Anim. Sci. Biotech. 2:102-110.
4 Masuyama, R., Y. Nakaya, S. Katsumata, Y. Kajita, M. Uehara, S. Tanaka, A. Sakai, S. Kato, T. Nakamura and K. Suzuki. 2003. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J. Bone Miner. Res. 18:1217-1226.   DOI   ScienceOn
5 Quamme, G. A. 1985. Phosphate transport in intestinal brush-border membrane vesicles: Effect of pH and dietary phosphate. Am. J. Physiol. Gastrointest. Liver Physiol. 12:G168-G176.
6 Radanovic, T., C. A. Wagner, H. Murer and J. Biber. 2005. Regulation of intestinal phosphate transport I. Segmental expression and adaptation to low-Pi diet of the type IIb Na+-Pi cotransporter in mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G496-G500.   DOI   ScienceOn
7 Rama Rao, S. V., M. V. L. N. Raju, M. R. Reddy, P. Pavani, G. Shyam Sunder and R. P. Sharma. 2003. Dietary calcium and non-phytin phosphorus interaction on growth, bone mineralization and mineral retention in broiler starter chicks. Asian-Aust. J. Anim. Sci. 16:719-725.   DOI
8 Saddoris, K. L., J. C. Fleet and J. S. Radcliffe. 2010. Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration. J. Nutr. 140:731-736.   DOI   ScienceOn
9 Wang, J. J., J. R. Wang, Z. L. Fu, P. Lou and H. Ren. 2010. Effects of dietary calcium and phosphorus levels on bone growth in broilers from 1 to 3 weeks of age. Chinese J. Anim. Nutr. 22:1088-1095.
10 Shirley, R. B., A. J. Davis, M. M. Compton and W. D. Berry. 2003. The expression of calbindin in chicks that are divergently selected for low or high incidence of tibial dyschondroplasia. Poult. Sci. 82:1965-1973.   DOI
11 Cheng, J. K. and G. X. Fan. 1993. Effects of high dietary calcium and low dietary phosphorus on acid-base balance in chickens. J. Beijing. Agric. College. 8:85-88.
12 Danisi, G. and H. Murer. 1991. Inorganic phosphate absorption in small intestine. In Handbook of Physiology, section 6, vol IV, chapter 12 (Ed. S. G. Schutt, M. Field and R. A. Frizzell). The Gastrointestinal System, Intestinal absorbtion & secretion, pp. 323-336.
13 Ding, J. L., Q. J. Sun, Y. Q. Zhu and Y. P. Zhou. 1994. Effects of dietary calcium and phosphorus on the growth and body calcium and phosphorus levels of broilers. Chinese J. Anim. Sci. 20:6-9.
14 Han, J. C., X. D. Yang, T. Zhang, H. Li, W. L. Li, Z. Y. Zhang and J. H. Yao. 2009. Effects of 1alpha-hydroxycholecalciferol on growth performance, parameters of tibia and plasma, meat quality, and type IIb sodium phosphate cotransporter gene expression of one-to twenty-one-day-old broilers. Poult. Sci. 88:323-329.   DOI   ScienceOn
15 Heaney, R. P. and B. E. C. Nordin. 2002. Calcium effects on phosphorus absorption: Implications for the prevention and co-therapy of osteoporosis. J. Am. Coll. Nutr. 21:239-244.   DOI   ScienceOn
16 Hilfiker, H., I. Hattenhauer, M. Traebert, I. Forster, H. Murer and J. Biber. 1998. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc. Natl. Acad. Sci. USA. 95:14564-14569.   DOI   ScienceOn
17 Hurwitz, S. and B. Arie. 1971. Calcium and phosphorus interrelationships in the intestine of the flow. J. Nutr. 101:677-686.
18 Al-Masri, M. R. 1995. Absorption and endogenous excretion of phosphorus in growing broiler chicks, as influenced by calcium and phosphorus ratios in feed. Br. J. Nutr. 74:407-415.   DOI   ScienceOn
19 Katai, K., K. Miyamoto, S. Kishida, H. Segawa, T. Nii, H. Tanaka, Y. Tani, H. Arai, S. Tatsumi, K. Morita, Y. Taketani and E. Takeda. 1999. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin $D_3$. Biochem. J. 343:705-712.   DOI   ScienceOn
20 Lambers, T. T., F. Mahieu, E. Oancea, L. Hoofd, F. Lange, A. R. Mensenkamp, T. Voets, B. Nilius, D. E. Clapham, J. G. Hoenderop and R. J. Bindels. 2006. Calbindin-D28K dynamically controls TRPV5-mediated $Ca^{2+}$ transport. EMBO J. 25:2978-2988.   DOI   ScienceOn
21 Ayasan, T. and F. Okan. 1999. The effects of dietary calcium and phosphorus levels on egg production traits and egg shell quality in Japanase quail. Hayvansal Uretim. 39-40:98-104.
22 Berner Y. N. and S. Moshe. 1988. Consequences of phosphate imbalance. Annu. Rev. Nutr. 8:121-148.   DOI   ScienceOn
23 Blahos, J., A. D. Care and B. S. Sommerville. 1987. Effect of low calcium and low phosphorus diets on duodenal and ileal absorption of phosphate in chick. Endocrinol. Exp. 21:59-64.