Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11201

Re-evaluation of the Optimum Dietary Vitamin C Requirement in Juvenile Eel, Anguilla japonica by Using L-ascorbyl-2-monophosphate  

Bae, Jun-Young (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
Park, Gun-Hyun (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
Yoo, Kwang-Yeol (Chungnam Fisheries Institute)
Lee, Jeong-Yeol (Department of Aquaculture and Aquatic Sciences, Kunsan National University)
Kim, Dae-Jung (New Strategy Research Center, National Fisheries Research and Development Institute)
Bai, Sung-Chul C. (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.1, 2012 , pp. 98-103 More about this Journal
Abstract
This study was conducted to re-evaluate the dietary vitamin C requirement in juvenile eel, Anguilla japonica by using L-ascorbyl-2-monophosphate (AMP) as the vitamin C source. Five semi-purified experimental diets were formulated to contain 0 ($AMP_0$), 30 ($AMP_{24}$), 60 ($AMP_{52}$), 120 ($AMP_{108}$) and 1,200 ($AMP_{1137}$) mg AMP $kg^{-1}$ diet on a dry matter basis. Casein and defatted fish meal were used as the main protein sources in the semi-purified experimental diets. After a 4-week conditioning period, fish initially averaging $15{\pm}0.3$ g (mean${\pm}$SD) were randomly distributed to each aquarium as triplicate groups of 20 fish each. One of five experimental diets was fed on a DM basis to fish in three randomly selected aquaria, at a rate of 3% of total body weight, twice a day. At the end of the feeding trial, weight gain (WG) and specific growth rate (SGR) for fish fed $AMP_{52}$ and $AMP_{108}$ were significantly higher than those recorded for fish fed the control diet (p<0.05). Similarly, feed efficiency (FE) and protein efficiency ratio (PER) for fish fed $AMP_{52}$ were significantly higher than those for fish fed the control diet (p<0.05). Broken-line regression analysis on the basis of WG, SGR, FE and PER showed dietary vitamin C requirements of juvenile eel to be 41.1, 41.2, 43.9 and 43.1 (mg $kg^{-1}$ diet), respectively. These results indicated that the dietary vitamin C requirement could range from 41.1 to 43.9 mg $kg^{-1}$ diet in juvenile eel when L-ascorbyl-2-monophosphate was used as the dietary source of vitamin C.
Keywords
Vitamin C; L-ascorbyl-2-monophosphate (AMP); Growth Performance; Eel; Anguilla japonica;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, X. J., K. W. Kim and S. C. Bai. 2002. Effects of different dietary levels of L-ascorbyl-2-polyphosphate on growth and tissue vitamin C concentrations in juvenile olive flounder, Paralichthys olivaceus. Aquacult. Res. 33:261-267.   DOI   ScienceOn
2 Wang, X. J., K. W. Kim and S. C. Bai. 2003a. Comparison of L-ascorbyl-2-monophosphate-Ca with L-ascorbyl-2-monophosphate-Na/Ca on growth and tissue ascorbic acid concentrations in Korean rockfish, Sebastes schlegeli. Aquaculture 225:387-395.   DOI   ScienceOn
3 Wang, X. J., K. W. Kim, S. C. Bai, M. D. Huh and B. Y. Cho. 2003b. Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish, Oplegnathus fasciatus. Aquaculture 215:203-211.   DOI   ScienceOn
4 Wilson, R. P., W. E. Poe and E. H. Robinson. 1989. Evaluation of L-ascorbyl-2-polyphosphate (C2PP) as a dietary ascorbic acid source for channel catfish. Aquaculture 81:129-136.   DOI   ScienceOn
5 Lin, M. F. and S. Y. Shiau. 2005. Dietary L-ascorbic acid affects growth, nonspecific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture 244:215-221.   DOI   ScienceOn
6 NRC (National Research Council Nutrient Requirements of Fish). 1993. National Academic Press, Washington, DC, USA.
7 Navarre, O. and J. E. Halver. 1989. Disease resistance and humoral antibody production in rainbow trout fed high levels of vitamin C. Aquaculture 79:207-221.   DOI   ScienceOn
8 Okorie, O. E., S. H. Ko, S. G. Go, S. H. Lee, J. Y. Bae, K. M. Han and S. C. Bai. 2008. Preliminary study of the optimum dietary ascorbic acid level in sea cucumber, Apostichopus japonicus (Selenka). J. World Aquac. Soc. 39(6):758-765.   DOI   ScienceOn
9 Ren, T., S. Koshio, S. Teshima, M. Ishikawa, M. Alam, A. Panganiban, Y. Y. Moe, T. Kojima and H. Tokumitsu. 2005. Optimum dietary level of L-ascorbic acid for Japanese eel, Anguilla japonica. J. World Aquac. Soc. 36(4):437-443.   DOI   ScienceOn
10 Robbins, K. R., H. W. Norton and D. H. Baker. 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109:1710-1714.
11 Sato, P., M, Nishikimi and S. Udenfriend. 1976. Is L-gulonolactone-oxidase the only enzyme missing in animals subject to scurvy? Biochem. Biophys. Res. Commun. 71:293-299.   DOI   ScienceOn
12 Shiau, S. Y. and T. S. Hsu. 1995. L-Ascorbyl-2-sulfate has equal antiscorbutic activity as L-ascorbyl-2-monophosphate for tilapia, Oreochromis niloticus${\times}$O. aureus. Aquaculture 133:147-157.   DOI   ScienceOn
13 Shiau, S. Y. and T. S. Hsu. 1999. Quantification of vitamin C requirement for juvenile hybrid tilapia, Oreochromis niloticus ${\times}$Oreochromis aureus, with L-ascorbyl-2-monophosphate-Na and L-ascorbyl-2-monophosphate-Mg. Aquaculture 175:317-326.   DOI   ScienceOn
14 Ai, Q. H., K. S. Mai, B. P. Tan, W. Xu, W. B. Zhang, H. M. Ma and Z. G. Liufu. 2006. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture 261:327-336.   DOI   ScienceOn
15 Gouillou-Coustans, M. F., P. Bergot and S. J. Kaushik. 1998. Dietary ascorbic acid needs of common carp, Cyprinus carpio larvae. Aquaculture 161:453-461.   DOI   ScienceOn
16 AOAC. 1995. Official methods of analysis of 16th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.
17 Durve, V. S. and R. T. Lovell. 1982. Vitamin C and disease resistance in channel catfish, Ictalurus punctatus. Can. J. Fish Aquat. Sci. 39:948-951.   DOI
18 FAO (Food and Agriculture Organization) 2010. Fishery information, data and statistics website. Aquaculture production, 1984-2009.
19 Hardie, L. J., T. C. Fletcher and C. J. Secombes. 1991. The effect of dietary vitamin C on the immune response of the Atlantic salmon, Salmo salar L. Aquaculture 95:201-214.   DOI   ScienceOn
20 Hilton, J. W., C. Y. Cho and S. J. Slinger. 1977. Evaluation of ascorbic acid status of rainbow trout, Salmo gairdneri. J. Fish. Res. Board Can. 34:2207-2210.   DOI
21 Kosutarak, P., A. Kanazawa, S. Teshima and S. Koshio. 1995. Interactions of L-ascorbyl-2-phosphate-Mg and n-3 highly unsaturated fatty acids on Japanese flounder juveniles. Fish. Sci. 61:860-866.   DOI
22 Li., Y. and R. T. Lovell. 1985. Elevated levels of dietary ascorbic acid increase immune responses in channel catfish. J. Nutr. 115:123-131.
23 Lim, C. and R. T. Lovell. 1978. Pathology of the vitamin C deficiency syndrome in channel catfish, Ictalurus punctatus. J. Nutr. 108:1137-1146.
24 Waagbo, R., J. Glette, E. Raa-Nilsen and K. Sandnes. 1993. Dietary vitamin C, immunity and disease resistance in Atlantic salmon, Salmo salar. Fish Physiol. Biochem. 12:61-73.   DOI   ScienceOn
25 Soliman, A. K., K. Jauncey and R. J. Roberts. 1986. The effect of varying forms of dietary ascorbic acid on the nutrition of juvenile tilapias, Oreochromis niloticus. Aquaculture 52:1-10.   DOI   ScienceOn
26 Soliman, A. K., K. Jauncey and R. J. Roberts. 1987. Stability of L-ascorbic acid (vitamin C) and its forms in fish feeds during processing, storage and leaching. Aquaculture 60:73-83.   DOI   ScienceOn
27 Tolbert, B. M. 1979. Ascorbic acid metabolism and physiological function. Int. J. Vitam. Nutr. Res. 19:127-142.