Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12276

Degradation of Phytate Pentamagnesium Salt by Bacillus sp. T4 Phytase as a Potential Eco-friendly Feed Additive  

Park, In-Kyung (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University)
Lee, Jae-Koo (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University)
Cho, Jaie-Soon (Department of Animal Sciences and Environment, College of Animal Bioscience and Technology, Konkuk University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.10, 2012 , pp. 1466-1472 More about this Journal
Abstract
A bacterial isolate derived from soil samples near a cattle farm was found to display extracellular phytase activity. Based on 16S rRNA sequence analysis, the strain was named Bacillus sp. T4. The optimum temperature for the phytase activity toward magnesium phytate (Mg-$InsP_6$) was $40^{\circ}C$ without 5 mM $Ca^{2+}$ and $50^{\circ}C$ with 5 mM $Ca^{2+}$. T4 phytase had a characteristic bi-hump two pH optima of 6.0 to 6.5 and 7.4 for Mg-$InsP_6$. The enzyme showed higher specificity for Mg-$InsP_6$ than sodium phytate (Na-$InsP_6$). Its activity was fairly inhibited by EDTA, $Cu^{2+}$, $Mn^{2+}$, $Co^{2+}$, $Ba^{2+}$ and $Zn^{2+}$. T4 phytase may have great potential for use as an eco-friendly feed additive to enhance the nutritive quality of phytate and reduce phosphorus pollution.
Keywords
Phytase; Bacillus sp.; Magnesium Phytate; Feed Additive; Phosphorus Pollution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tomschy, A., M. Wyss, D. Kostrewa, K. Vogel, M. Tessier, S. Hofer, H. Burgin, A. Kronenberger, R. Remy, A. P. G. M. Van Loon and L. Pasamontes. 2000. Active site residue 297 of Aspergillus niger phytase critically affects the catalytic properties. FEBS Lett. 472:169-172.   DOI   ScienceOn
2 Torres, J., S. Dominguez, F. M. Cerda, G. Obal, A. Mederos, R. F. Irvine, A. Dìaz and C. Kremer. 2005. Solution behavior of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J. Inorg. Biochem. 99:828-840.   DOI   ScienceOn
3 Tran, T. T., S. O. Hashim, Y. Gaber, G. Mamo, B. Mattiasson and R. Hatti-Kaul. 2011. Thermostability alkaline phytase from Bacillus sp. MD2: Effect of divalent metals on activity and stability. J. Inorg. Biochem. 105:1000-1007.   DOI   ScienceOn
4 Vats, P. and U. C. Banerjee. 2005. Biochemical characterization of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem. J. Ind. Microbiol. Biotechnol. 32:141-147.   DOI
5 William, G. W., M. B. Susan, A. P. Dale and J. L. David. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703.
6 Zhang, R., P. Yang, H. Huang, T. Yuan, P. Shi, K. Meng and B. Yao. 2011. Molecular and biochemical characterization of a new alkaline -propeller phytase from the insect symbiotic bacterium Janthinobacterium sp. TN115. Appl. Microbiol. Biotechnol. 92:317-325.   DOI
7 Zeng, Y. F., T. P. Ko, H. L. Lai, Y. S. Cheng, T. H. Wu, Y. Ma, C. C. Chen, C. S. Yang, R. T. Guo and J. R. Liu. 2011. Crystal structure of Bacillus alkaline phytase in complex with divalent metal ions and inositol hexasulfate. J. Mol. Biol. 409:214-224.   DOI   ScienceOn
8 Haefner, S., A. Knietsch, E. Scholten, J. Braun, M. Lohscheidt and O. Zelder. 2005. Biotechnological production and application of phytases. Appl. Microbiol. Biotechnol. 68:588-597.   DOI
9 Adeola, O. and A. J. Cowieson. 2011. BOARD-INVITED REVIEW: opportunities and challenges in using exogenous enzymes to improve nonruminant animal nutrition. J. Anim. Sci. 89:3189-3218.   DOI   ScienceOn
10 Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
11 Oh, B. C., B. S. Chang, K. H. Park, N. C. Ha, H. K. Kim, B. H. Oh and T. K. Oh. 2001. Calcium dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochem. 40:9669-9676.   DOI   ScienceOn
12 Oh, B. C., W. C. Choi, S. Park, Y. O. Kim and T. K. Oh. 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biotechnol. 63:362-372.   DOI   ScienceOn
13 Powar, V. K. and V. Jagannathan. 1982. Purification and properties of phytase-specific phosphatase from Bacillus subtilis. J. Bacteriol. 151:1102-1108.
14 Selle, P. H. and V. Ravindran. 2007. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1-41.   DOI   ScienceOn
15 Shobirin, A., M. Hussin, A. E. Farouk, R. Greiner, H. M. Salleh and A. F. Ismail. 2007. Phytate-degrading enzyme production by bacteria isolated from Malaysian soil. World J. Microbiol. Biotechnol. 23:1653-1660.   DOI
16 Sulabo, R. C., C. K. Jones, M. D. Tokach, R. D. Goodband, S. S. Dritz, D. R. Campbell, B. W. Ratliff, J. M. DeRouchey and J. L. Nelssen. 2011. Factors affecting storage stability of various commercial phytase sources. J. Anim. Sci. 89:4262-4271.   DOI   ScienceOn
17 Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolution Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI   ScienceOn
18 Tamura, K., M. Nei and S. Kumar. 2004. Prospect for inferring very large phylogenies by using the neighbor-joining methods. Proc. Natl. Acad. Sci. USA. 101:11030-11035.   DOI   ScienceOn
19 Thompson, J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI   ScienceOn
20 Bae, H. D., L. J. Yanke, K. J. Cheng and L. B. Selinger. 1999. A novel staining method for detecting phytase activity. J. Microbiol. Methods 39:17-22.   DOI   ScienceOn
21 Heinonen, J. K. and R. J. Lahti. 1981. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphate. Anal. Biochem. 113:313-317.   DOI   ScienceOn
22 Kebreab, E., A. B. Strathe, A. Yitbarek, C. M. Nyachoti, J. Dijkstra, S. Lopez and J. France. 2011. Modeling the efficiency of phosphorus utilization in growing pigs. J. Anim. Sci. 89:2774-2781.   DOI   ScienceOn
23 Kerovuo, J., I. Lappalainen and T. Reinikainen. 2000. The metal dependence of Bacillus subtilis phytase. Biochem. Biophys. Res. Commun. 268:365-369.   DOI   ScienceOn
24 Kerovuo, J., M. Lauraeus, P. Nurminen, N. Kalkkinen and J. Apajalahti. 1998. Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64:2079-2085.
25 Kim, Y. O., H. K. Kim, K. S. Bae, J. H. Yu and T. K. Oh. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme. Microb. Technol. 22:2-7.   DOI   ScienceOn
26 Lei, X. G. and J. M. Porres. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25:1787-1794.   DOI   ScienceOn
27 Luo, H., H. Huang, P. Yang, Y. Wang, T. Yuan, N. Wu, B. Yao and Y. Fan. 2007. A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr. Microbiol. 55:185-192.   DOI
28 Mullaney, E. J., C. B. Daly, T. Kim, J. M. Porres, X. G. Lei, K. Sethumadhavan and A. H. J. Ullah. 2002. Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem. Biophys. Res. Commun. 297:1016-1020.   DOI   ScienceOn
29 Mullaney, E. J. and A. H. J. Ullah. 2003. The term phytase comprises several different classes of enzymes. Biochem. Biophys. Res. Commun. 312:179-184.   DOI   ScienceOn
30 Casey, A. and G. Walsh. 2003. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresour. Technol. 86:183-188.   DOI   ScienceOn
31 Cho, J., K. C. Choi, T. Darden, P. R. Reynolds, J. N. Petitte and S. B. Shears. 2006. Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet's phosphate crisis. J. Biotechnol. 126:248-259.   DOI   ScienceOn
32 Cho, J., J. S. King, X. Qian, A. J. Harwood and S. B. Shears. 2008. Dephosphorylation of 2.3-bisphosphoglycerate by MIPP expands the regulatory capacity of the Rapoport-Luebering glycolytic shunt. Proc. Natl. Acad. Sci. USA. 105:5998-6003.   DOI   ScienceOn
33 Choi, Y. M., H. J. Suh and J. M. Kim. 2001. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Protein Chem. 20:287-292.   DOI   ScienceOn
34 Fu, S., J. Sun, L. Qian and Z. Li. 2008. Bacillus phytases:present scenario and future perspectives. Appl. Biochem. Biotechnol. 151:1-8.   DOI   ScienceOn
35 Gibson, R. S., K. B. Bailey, M. Gibbs and E. L. Ferguson. 2010. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 31:S134-S146.
36 Greiner, R., U. Konietzny and K. D. Jany. 1993. Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303:107-113.   DOI   ScienceOn
37 Gulati, H. K., B. S. Chadha and H. S. Saini. 2007. Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil. J. Ind. Microbiol. Biotechnol. 34:91-98.