Browse > Article
http://dx.doi.org/10.5713/ajas.2011.10412

Effect of Antler Development Stage on the Chemical Composition of Velvet Antler in Elk (Cervus elaphus canadensis)  

Jeon, Byong-Tae (Korea Nokyong Research Center, Konkuk University)
Cheong, Sun-Hee (Korea Nokyong Research Center, Konkuk University)
Kim, Dong-Hyun (Korea Nokyong Research Center, Konkuk University)
Park, Jae-Hyun (Korea Nokyong Research Center, Konkuk University)
Park, Pyo-Jam (Korea Nokyong Research Center, Konkuk University)
Sung, Si-Heung (Korea Nokyong Research Center, Konkuk University)
Thomas, David G. (Konkuk University)
Kim, Kyoung-Hoon (National Institute of Animal Science, RDA)
Moon, Sang-Ho (Korea Nokyong Research Center, Konkuk University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.9, 2011 , pp. 1303-1313 More about this Journal
Abstract
This study was conducted to provide the basic information to allow improved scientific assessment of velvet antler's quality by investigating the change of chemical composition during different antler growth stages in elk (Cervus elaphus canadensis). Twenty four antlers were harvested from elk stags (aged 4-5 years) on 65 days (VA65), 80 days (VA80) and 95 days (VA95) after button casting, and the chemical composition of each antler was determined in five sections (top, upper, middle, base, and bottom). Crude protein and ether extract content was the highest in the top section, whereas ash content was the highest in the bottom section in all groups (p<0.05). Glycosaminoglycan (GAG) content was higher in the VA65 group than in the VA95 group in the upper section of antler (p<0.05). The collagen content was higher in the VA65 group compared to the VA95 group in the middle and bottom sections (p<0.05), and increased downward from the top to the bottom section. The proportions of certain amino acids, including aspartic acid, glutamic acid and isoleucine were higher (p<0.05), whereas proline and glycine were lower in the top section of antler compared to all other sections (p<0.05). The proportion of linoleic acid, 11,14,17-eicosatrienoic acid, total ${\omega}$-3 and ${\omega}$-6 fatty acids and polyunsaturated fatty acids (PUFAs) for all sections in the VA65 group was higher than in the VA95 group (p<0.05). These results suggested that the quality of velvet antler is strongly influenced by antler development stage.
Keywords
Elk(Cervus elaphus canadensis); Chemical Composition; Growth Period; Velvet Antler;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Weladji, R. B., O. Holand, G. Steinheim, J. E. Colman, H. Gjostein and A. Kosmo. 2005. Sexual dimorphism and intercohort variation in reindeer calf antler length is associated with density and weather. Oecologia 145:549-555.   DOI
2 Zhang, Z. Q., Y. Zhang, B. X. Wang, H. O. Zhou, Y. Wang and H. Zhang. 1992. Purification and partial characterization of antiinflammatory peptide from pilose antler of Cervus Nippon Temminck. Acta Pharmacol. Sin. 27:321-324.
3 Park, P. W. and R. E. Goins. 1994. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. J. Food. Sci. 59:1262-1266.   DOI
4 Rucklidge, G. J., G. Milne, K. J. Bos, C. Farquharson and S. P. Robins. 1997. Deer antler does not represent a typical endochondral growth system: immunoidentification of collagen type X but little collagen type II in growing antler tissue. Comp. Biochem. Physiol. 118B:303-308.
5 Schultz, S. R., M. K. Johnson, S. E. Feagley, L. L. Southern and T. L. Ward. 1994. Mineral content of Louisiana white-tailed deer. J. Wildl. Dis. 30:77-85.   DOI   ScienceOn
6 Scott, J. E. 1960. Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Methods Biochem. Anal. 8:145-197.
7 Scott, J. E. and E. W. Hughes. 1981. Chondroitin sulfate from fossilized antlers. Nature 291:580-581.   DOI
8 Sunwoo, H. H. 1998. Isolation, characterization and localization of glycosamines in growing antlers of wapiti (Cervus elaphus). Comp. Biochem. Physiol. Part B. 120:273-283.   DOI   ScienceOn
9 Sunwoo, H. H., L. Y. M. Sim, T. Nakano, R. J. Hudson and J. S. Sim. 1997. Glycosaminoglycans from growing antlers of wapiti (Cervus elaphus). Can. J. Anim. Sci. 77:715-721.   DOI   ScienceOn
10 Sunwoo, H. H., T. Nakano, R. J. Hudson and J. S. Sim. 1995. Chemical composition of antlers from Wapiti (Cervus elaphus). J. Agric. Food Chem. 43:2846-2849.   DOI
11 Wardale, R. J. and V. C. Duance. 1993. Characterization of porcine articular and growth plate collagens. J. Cell. Sci. 105:975-984.
12 Warren, L. 1959. The thiobarbituric acid assay of sialic acids. J. Biol. Chem. 234:1971-1975.
13 Kay, R. N. B., M. Phillio, J. M. Suttie and G. Wenham. 1982. The growth and mineralization of antlers. J. Physiol. 322:4(Abstr.).
14 Kosakaki, M. and Z. Yosizawa. 1979. A partial modification of the cartilage method of Bitter and Muir for quantization of hexuronic acids. Anal. Biochem. 93:295-298.   DOI   ScienceOn
15 Landete-Castillejos, T., A. Garcia and L. Gallego. 2007. Body weight, early growth and antler size influence antler bone mineral composition of Iberian Red Deer (Cervus elaphus hispanicus). Bone 40:230-235.   DOI   ScienceOn
16 Leeb, B. F., J. Sautner, I. Andel and B. Rintelen. 2006. Intravenous application of omega-3 fatty acids in patients with active rheumatoid arthritis. The ORA-1 trial. An open pilot study. Lipids 41:29-34.   DOI   ScienceOn
17 Li, C. 2003. Development of deer antler model for biochemical research. Rec. Adv. Res. Updates 4:255-274.
18 Miller, K. V., R. L. Marchinton and J. R. Beckwith. 1985. Variations in density and chemical composition of white-tailed deer antlers. J. Mamm. 66:693-701.   DOI   ScienceOn
19 Moon, S. H., S. K. Kang, S. M. Lee, M. H. Kim and B. T. Jeon. 2004. A study on the seasonal comparison of dry matter intake, digestibility, nitrogen balance and feeding behavior in spotted deer fed forest by-product silage and corn silage. Asian-Aust. J. Anim. Sci. 17:57-65.   과학기술학회마을   DOI
20 Moen, R. and J. Pastor. 1998. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou. Rangifer, Special Issue 10:85-97.
21 Moreau, M., J. Dupuis, N. H. Bonneau and M. Lecuyer. 2004. Clinical evaluation of a powder of quality elk velvet antler for the treatment of osteoarthritis in dogs. Can. Vet. J. 45:133-139.
22 Elliott, J. L., J. M. Oldham, G. W. Asher, P. C. Molan and J. J. Bass. 1996. Effect of testosterone on binding of insulin-like growth factor-I (IGF-I) and IGF-II in growing antlers of fallow deer (Dama dama). Growth Regul. 6:214-221.
23 Farndale, R. W., C. A. Sayer and A. J. Bsrett. 1982. A direct spectrophotometric assay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tiss. Res. 9:247-248.   DOI
24 Fletcher, T. J. 1986. Reproduction: seasonality. In: Management and Diseases of Deer (Ed. T. L. Alexander). Veterinary Deer Society, London. pp. 17-18.
25 Goss, R. J. 1983. Developmental anatomy of antlers. In: Deer Antlers: Regeneration, Function and Evolution (Ed. R. J. Goss). Academics Press, New York. pp. 133-171.
26 Ha, Y. W., B. T. Jeon, S. H. Moon and Y. S. Kim. 2003. Biochemical components among different fodders-treated antlers. Kor. J. Pharmacogn. 34:40-44.   과학기술학회마을
27 Jeon, B. T., S. J. Kim, S. M. Lee, P. J. Park, S. H. Sung, J. M. Kim and S. H. Moon. 2009. Effect of antler growth period on the chemical composition of velvet antler in sika deer (Cervus nippon). Mamm. Biol. 74:374-380.   DOI   ScienceOn
28 Ha, Y. W., B. T. Jeon, S. H. Moon, H. Toyoda, T. Toida, R. J. Linhardt and Y. S. Kim. 2005. Characterization of heparin sulfate from the unossified antler of Cervus elaphus. Carbohydr. Res. 340:411-416.   DOI   ScienceOn
29 Hemmings, S. and X. Song. 2004. The effects of elk velvet antler consumption on the rat: Development, behaviour, toxicity and the activity of liver gamma-glutamyltranspeptidase. Comp. Biochem. Physiol. 138:105-112.   DOI   ScienceOn
30 Hunter, G. A. 1991. Role of proteoglycan in the provisional calcification of cartilage. A review and reinterpretation. Clin. Orthop. Rel. Res. 262:256-280.
31 Jeon, B. T. and S. H. Moon. 2006. A review on feeding system for deer production. JIFS. 3:39-44.
32 Allen, M., K. Oberle, M. Grace, A. Russell and A. J. Adewale. 2008. A randomized clinical trial of elk velvet antler in rheumatoid arthritis. Biol. Res. Nurs. 9:254-261.   DOI
33 AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia.
34 Choi, H. K., K. H. Kim, K. H. Kim, Y. S. Kim, M. W. Lee and W. K. Whang. 2006. Metabolomic differentiation of deer antlers of various origins by HNMR spectrometry and principal components analysis. J. Pharm. Biomed. Anal. 4:1047-1050.
35 Berbert, A. A., C. R. Kondo, C. L. Almendra, T. Matsuo and I. Dichi. 2005. Supplementation of fish oil and olive oil in patients with rheumatoid arthritis. Nutr. 21:131-136.   DOI   ScienceOn
36 Bergman, I. and R. Loxley. 1962. Two improve and simple methods for the spectrophotometric determination of hydroxyproline. Anal. Chem. 35:1961-1965.
37 Chapman, D. I. 1975. Antlers-bones of contention. Mamm. Rev. 5:121-172.   DOI
38 Cross, H. R., Z. L. Carpenter and G. C. Smith. 1973. Effect of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 38:998-1003.   DOI
39 Currey, J. D. 1999. The design of mineralized hard tissues for their mechanical functions. J. Exp. Biol. 202:3285-3294.