Browse > Article
http://dx.doi.org/10.5713/ajas.2011.10344

Proteomic Analysis of Bovine Muscle Satellite Cells during Myogenic Differentiation  

Rajesh, Ramanna Valmiki (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration)
Jang, Eun-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration)
Choi, In-Ho (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration)
Heo, Kang-Nyeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration)
Yoon, Du-Hak (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration)
Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration)
Lee, Hyun-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.9, 2011 , pp. 1288-1302 More about this Journal
Abstract
The aim of this study was to analyze the proteome expression of bovine satellite cells from longissimus dorsi (LD), deep pectoral (DP) and semitendinosus (ST) muscle depots during in vitro myogenic differentiation. Proteomic profiling by twodimensional gel electrophoresis and mass spectrometry of differentiating satellite cells revealed a total of 38 proteins that were differentially regulated among the three depots. Among differentially regulated proteins, metabolic proteins like lactate dehydrogenase (LDH), malate dehydrogenase (MDH) were found to be up regulated in ST, while alpha-enolase (NNE) in LD and DP depot satellite cells were down regulated. Also, our analysis found that there was a prominent up regulation of cytoskeletal proteins like actin, actincapping protein and transgelin along with chaperone proteins like heat shock protein beta 1 (HSPB 1) and T-complex protein 1 (TCP-1). Among other up regulated proteins, LIM domain containing protein, annexin 2 and Rho GDP-dissociation inhibitor 1 (Rho GDI) are observed, which were already proven to be involved in the myogeneis. More interestingly, satellite cells from ST depot were found to have a higher myotube formation rate than the cells from the other two depots. Taken together, our results demonstrated that, proteins involved in glucose metabolism, cytoskeletal modeling and protein folding plays a key role in the myogenic differentiation of bovine satellite cells.
Keywords
Bovine Satellite Cells; Depot; Proteome; Myogenesis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Allen, R. E. and L. L. Rankin. 1990. Regulation of satellite cells during skeletal muscle growth and development. Proc. Soc. Exp. Biol. Med. 94:81-86.
2 Barjoti, C., V. Laplace-Marieze, L. Gannoun-Zaki, G. Mckoy, M. Le Briand, P. Vigneroni and F. Bacou. 1998. Expression of lactate dehydrogenase, myosin heavy chain and myogenic regulatory factor genes in rabbit embryonic muscle cell cultures. J. Muscle Res. Cell. Motil. 19:343-351.   DOI
3 Bhasin, S., L. Woodhouse, R. Casaburi, A. B. Singh, D. Bhasin and N. Berman. 2001. Testosterone dose-response relationships in healthy young men. Am. J. Physiol. Endocrinol. Metab. 281:E1172-1181.
4 Bouley, J., B. Meunier, C. Chambon, S. De Smet, J. F. Hocquette and B. Picard. 2005. Proteomic analysis of bovine skeletal muscle hypertrophy. Proteomics 5:490-500.   DOI   ScienceOn
5 Bracha1, A. L., A. Ramanathan, S. Huang, D. EIngber and S. L. Schreiber. 2010. Carbon metabolism-mediated myogenic differentiation. Nat. Chem. Biol. 6:202-204.   DOI   ScienceOn
6 Bryan, B. A., D. Li, X. Wu and M. Liu. 2005. The Rho family of small GTPases: Crucial regulators of skeletal myogenesis. Cell. Mol. Life Sci. 62:1547-1555.   DOI   ScienceOn
7 Campion, D. R. 1984. The muscle satellite cell: a review. Int. Rev. Cytol. 87:225-251.   DOI
8 Tannu, N. S., V. K. Rao, R. M. Chaudhary, F. Giorgianni, A. E. Saeed, Y. Gao and R. Raghow. 2004. Comparative proteomes of the proliferating C2C12 myoblasts and fully differentiated myotubes reveal the complexity of the skeletal muscle differentiation program. Mol. Cell Proteomics 3:1065-1082.   DOI   ScienceOn
9 Thompson, H. S., E. B. Maynard, E. R. Morales and S. P. Scordilis. 2003. Exercise-induced HSP27, HSP70 and MAPK responses in human skeletal muscle. Acta Physiol. Scand. 178:61-72.   DOI   ScienceOn
10 Rajesh, R. V., S. K. Kim, M. R. Park, M. A. Park, E. J. Jang, S. G. Hong, J. S. Chang, D. Yoon, T. H. Kim and H. J. Lee. 2009. Differential proteome expression of in vitro proliferating bovine satellite cells from Longissimuss dorsi, Deep pectoral and Semitendinosus muscle depots in response to hormone deprivation and addition. Korean Journal of Animal Science and Technology 51:459-470.   DOI   ScienceOn
11 Rudnicki, M. A., P. N. J. Schnegelsberg, R. H. Stead, T. Braun, H. H. Arnold and R. Jaenisch. 1993. MyoD or Myf5 is required for the formation of skeletal muscle. Cell 75:1351-1359.   DOI   ScienceOn
12 Schmidt, A. and M. N. Hall. 1998. Signaling to the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14:305-338.   DOI   ScienceOn
13 Sternlicht, H., G. W. Farr, M. L. Sternlicht, J. K. Driscoll, K. Willison and M. B. Yaffe. 1993. The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc. Natl. Acad. Sci. USA. 90:9422-9426.   DOI
14 Seale, P. and M. A. Rudnicki. 2000. A new look at the origin, function, and ''Stem-Cell'' status of muscle satellite cells. Dev. Biol. 218:115-124.   DOI   ScienceOn
15 Shibata, M., K. Matsumoto, M. Oe, M. Ohnishi-Kameyama, K. Ojima, I. Nakajima, S. Muroya and K. Chikuni. 2009. Differential expression of the skeletal muscle proteome in grazed cattle. J. Anim. Sci. 87:2700-2708.   DOI   ScienceOn
16 Smith, C. K., M. J. Janney and R. E. Allen. 1994. Temporal expression of myogenic regulatory genes during activation, proliferation, and differentiation of rat skeletal muscle satellite cells. J. Cell. Physiol. 159:379-385.   DOI   ScienceOn
17 Tajbakhsh, S., D. Rocancourt and M. Buckingham. 1996. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384:266-270.   DOI   ScienceOn
18 Kook, S. H., K. C. Choi, Y. O. Son, K. Y. Lee, I. H. Hwang, H. J. Lee, J. S. Chang, I. H. Choi and J. C. Lee. 2006. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblasts and adipose-like cells. Mol. Cells 22:239-245.   과학기술학회마을
19 Landry, F., C. R. Lombardo and J. W. Smith. 2000. A method for application of samples to Matrix-Assisted Laser Desorption Ionization Time-of-Flight targets that enhances peptide detection. Anal. Biochem. 279:1-8.   DOI   ScienceOn
20 Laville, E., T. Sayd, M. Morzel, S. Blinet, C. Chambon, J. Lepetit, G. Renand and J. F. Hocquette. 2009. Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. J. Agric. Food Chem. 57:10755-10764.   DOI   ScienceOn
21 Peterson, C. A., M. Cho, F. Rastinejad and H. M. Blau. 1992. $\beta$-Enolase is a marker of human myoblast heterogeneity prior to differentiation. Dev. Biol. 151:626-629.   DOI   ScienceOn
22 Lehnert, S. A., A. Reverter, K. A. Byrne, Y. Wang, G. S. Nattrass, N. J. Hudson and P. L. Greenwood. 2007. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev. Biol. 7:95-108.   DOI   ScienceOn
23 Lennon, N. J., A. Kho, B. J. Bacskai, S. L. Perlmutter, B. T. Hyman and R. H. Brown Jr. 2003. Dysferlin Interacts with Annexins A1 and A2 and Mediates Sarcolemmal Woundhealing. J. Biol. Chem. 278:50466-50473.   DOI   ScienceOn
24 Moss, F. P. and C. P. Leblond. 1971. Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec. 170:421-435.   DOI   ScienceOn
25 Picard, B., C. Berri, L. Lefaucheur, C. Molette, T. Sayd and C. Terlouw. 2010. Skeletal muscle proteomics in live stock. Brief Funct Genomic Proteomic bfg.oxfordjournals.org/cgi/content/full/elq005v1
26 Hellmann, U., C. Wemstedt, J. Gonez and C. H. Heldin. 1995. Improvement of an "In-gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224:451-455.   DOI   ScienceOn
27 Houbak, M. B., P. Ertbjerg and M. Therkildsen. 2008. In vitro study to evaluate the degradation of bovine muscle proteins post-mortem by proteasome and $\mu$-calpain. Meat Sci. 79:77-85.   DOI   ScienceOn
28 Jia, X., K. Hollung, M. Therkildsen, K. I. Hildrum and E. Bendixen. 2006. Proteome analysis of early post-mortem changes in two bovine muscle types: M. longissimus dorsi and M. semitendinosus. Proteomics 6:936-944.   DOI   ScienceOn
29 Kim, N. K., S. Cho, S. H. Lee, H. R. Park, C. S. Lee, Y. M. Cho, Y. H. Choy, D. Yoon, S. K. Im and E. W. Park. 2008. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci. 80:1068-1073.   DOI   ScienceOn
30 Kamanga-Sollo, E., M. E. White, M. R. Hathaway, K. Y. Chung, B. J. Johnson and W. R. Dayton. 2008. Roles of IGF-1 and the estrogen, androgen and IGF-1 receptors in estradiol-17$\beta$ and trenbolone acetate-stimulated proliferation of cultures bovine satellite cells. Domest. Anim. Endocrinol. 35:88-97.   DOI   ScienceOn
31 Kim, N. K., S. H. Lee, Y. M. Cho, E. S. Son, K. Y. Kim, C. S. Lee, D. Yoon, S. K. Im, S. J. Oh and E. W. Park. 2009. Proteome analysis of the m. longissimus dorsi between fattening stages in Hanwoo steer. BMB Rep. 42:433-438.   과학기술학회마을   DOI   ScienceOn
32 Kislinger, T., A. O. Gramolini, Y. Pan, K. Rahman, D. H. MacLennan and A. Emili. 2005. Proteome dynamics during C2C12 myoblast differentiation. Mol. Cell Proteomics 4:887-901.   DOI   ScienceOn
33 Kong, Y., M. J. Flick, A. J. Kudla and S. F. Konieczny. 1996. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol. Cell. Biol. 17:4750-4760.
34 Chaze, T., B. Meunier, C. Chambon, C. Jurie and B. Picard. 2008. In vivo proteome dynamics during early bovine myogenesis. Proteomics 8:4236-4248.   DOI   ScienceOn
35 Cooper, R. N., S. Tajbakhsh, V. Mouly, G. Cossu, M. Buckingham and G. S. Butler-Browne. 1999. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J. Cell Sci. 112:2895-2901.
36 Cornelison, D. D. and B. J. Wold. 1997. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191:270-283.   DOI   ScienceOn
37 Grounds, M. D., K. L. Garrett, M. C. Lai, W. E. Wright and M. W. Beilharz. 1992. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res. 267:99-104.   DOI
38 Doumit, M. E. and R. A. Merkel. 1992. Conditions for the isolation and culture of porcine myogenic satellite cells. Tissue Cell 24:253-262.   DOI   ScienceOn
39 Dovas, A. and J. R. Couchman. 2005. RhoGDI: Multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390:1-9.   DOI   ScienceOn
40 Fischer, D., J. Matten, J. Reimann, C. Bonnemann and R. Schroder. 2002. Expression, localization and functional divergence of alphaB-crystallin and heat shock protein 27 in core myopathies and neurogenic atrophy. Acta Neuropathol. 104:297-304.
41 Halevy, O., A. Krispin, Y. Leshem, J. P. MCMurthy and S. Yahav. 2001. Early-age heat exposure affects skeletal muscle satellite cell proliferation and differentiation in chicks. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R302-R309.
42 Hamelin, M., T. Sayd, C. Chambon, J. Bouix, B. Bibé, D. Milenkovic, H. Leveziel, M. Georges, A. Clop, P. Marinova and E. Laville. 2006. Proteomic analysis of ovine muscle hypertrophy. J. Anim. Sci. 84:3266-3276.   DOI   ScienceOn
43 Ahmed, M. and P. Bergsten. 2005. Glucose-induced changes of multiple mouse islet proteins analysed by two-dimensional gel electrophoresis and mass spectrometry. Diabetologica 48:477-485.   DOI