Browse > Article
http://dx.doi.org/10.5713/ajas.2011.10348

Effects of Passive Transfer Status on Growth Performance in Buffalo Calves  

Mastellone, V. (Department of Experimental Clinical Medicine, School of Veterinary Medicine, University of Catanzaro Magna Graecia)
Massimini, G. (Department of Experimental Clinical Medicine, School of Veterinary Medicine, University of Catanzaro Magna Graecia)
Pero, M.E. (Department of Biological Structures, Functions and Technologies, School of Veterinary Medicine, University of Napoli Federico II)
Cortese, L. (Department of Clinic Veterinary Science, School of Veterinary Medicine, University of Napoli Federico II)
Piantedosi, D. (Department of Clinic Veterinary Science, School of Veterinary Medicine, University of Napoli Federico II)
Lombardi, P. (Department of Biological Structures, Functions and Technologies, School of Veterinary Medicine, University of Napoli Federico II)
Britti, D. (Department of Experimental Clinical Medicine, School of Veterinary Medicine, University of Catanzaro Magna Graecia)
Avallone, L. (Department of Biological Structures, Functions and Technologies, School of Veterinary Medicine, University of Napoli Federico II)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.7, 2011 , pp. 952-956 More about this Journal
Abstract
The objective of the study was to evaluate the effect of passive transfer status, determined by measuring serum immunoglobulin (Ig) concentration 24 hours after parturition, on growth performance in buffalo calves allowed to nurse the dam during the first month of life. Serum Ig concentration 24 hours after birth ranged from 28.1 to 35.9 mg/ml, birth weight ranged from 29 to 41 kg, body weight 30 days after birth ranged from 48.5 to 62.9 kg. The Average Daily Gain (ADG) from birth to day 30 ranged from 448 to 1,089 g/d. Significant linear associations were detected between serum Ig concentration 24 hours after birth and day-30 weight (p< 0.05; $R^2$ = 0.31) and between serum Ig concentration 24 hours after birth and ADG from birth to day 30 (p<0.001; $R^2$ = 0.72). Results indicated that passive transfer status was a significant source of variation in growth performance when buffalo calves nursed the dam. Maximizing passive transfer of immunity by allowing calves to nurse the dam can increase growth performance during the first month of life.
Keywords
Buffalo Calves; IgG; Growth;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Robinson, J. D., G. H. Stott and S. K. De Nise. 1988. Effects of passive immunity on growth and survival in the dairy heifer. J. Dairy Sci. 71:1283-1287.   DOI
2 Tyler, J. W., D. D. Hancock, S. E. Wiksie, S. L. Holler, J. M. Gay and C. C. Gay. 1998. Use of serum protein concentration to predict mortality in mixed-source dairy replacement heifers. J. Vet. Int. Med. 12:79-83.   DOI   ScienceOn
3 Virtala, A. M. K., G. D. Mechor, Y. T. Gröhn and H. N. Erb. 1996. The effect of calfhood diseases on growth of female dairy calves during the first 3 months of life in New York State. J. Dairy Sci. 79:1040-1049.   DOI   ScienceOn
4 Weaver, D. M., J. W. Tyler, D. C. VanMetre, D. E. Hostetler and G. M. Barrington. 2000. Passive transfer of colostral immunoglobulins in calves. J. Vet. Int. Med. 14:569-577.   DOI   ScienceOn
5 Wittum, T. E. and L. J. Perino. 1995. Passive immune status at postpartum hour 24 and long-term health and performance of calves. Am. J. Vet. Res. 56:1149-1154.
6 Denise, S. K., J. D. Robison, G. H. Stott and D. V. Armstrong. 1989. Effects of passive immunity on subsequent production in dairy heifers. J. Dairy Sci. 72:552-554.   DOI
7 Fleury, P. and R. Eberhard. 1951. Determination of proteins by photometric, biuret according to the technique of Gornall. Ann. Biol. Clin. 9:453-466.
8 Galyean, M. L., L. J. Perino and G. C. Duff. 1999. Interaction of cattle health/immunity and nutrition. J. Anim. Sci. 77:1120-1134.
9 Lombardi, P., L. Avallone, A. d'Angelo and E. Bogin. 1996. Gamma-glutamyltransferase and serum proteins in buffalo calves following colostral ingestion. Eur. J. Clin. Chem. Clin. Biochem. 34:965-968.
10 Lombardi, P., L. Avallone, U. Pagnini, D. d'Angelo and E. Bogin. 2001. Evaluation of buffalo colostrum quality by estimation of enzyme activity levels. J. Food Prot. 64:1265-1267.
11 Massimini, G., A. Peli, A. Boari and D. Britti. 2006a. Evaluation of assay procedures for prediction of passive transfer status in lambs. Am. J. Vet. Res. 67:593-598.   DOI   ScienceOn
12 Massimini, G., D. Britti, A. Peli and S. Cinotti. 2006b. Effect of passive transfer status on preweaning growth performance in dairy lambs. J. Am. Vet. Med. Assoc. 229:111-115.   DOI   ScienceOn
13 Massimini, G., V. Mastellone, D. Britti, P. Lombardi and L. Avallone. 2007. Effect of passive transfer status on preweaning growth performance in dairy goat kids. J. Am. Vet. Med. Assoc. 231:1873-1877.   DOI   ScienceOn
14 Matte, J. J., L. Girard, J. R. Seoane and J. G. Brisson. 1982. Absorption of colostral immunoglobulin G in the newborn dairy calf. J. Dairy Sci. 65:1765-1770.   DOI
15 Odle, J., R. T. Zijlstra and S. M. Donovan. 1996. Intestinal effects of milkborne growth factors in neonates of agricultural importance. J. Anim. Sci. 74:2509-2522.
16 Cabello, G. and D. Levieux. 1981. Absorption of colostral IgG1 by the newborn lamb: influence of the length of gestation, birthweight and thyroid function. Res. Vet. Sci. 31:190-194.
17 Barrington, G. M. and S. M. Parish. 2002. Ruminant immunodeficiency disease. In: Large animal internal medicine (Ed. S. P. Smith). 3rd ed. St Louis: CV Mosby Co, 1600-1602.
18 Bogin, E., Y. Avidar, S. Shnkler, B. A. Israeli, N. Spiegel and R. Cohen. 1993. A rapid field test for the determination of colostral ingestion by calves. Eur. J. Clin. Chem. Clin. Biochem. 31:695-699.
19 Britti, D., G. Massimini, A. Peli, A. Luciani and A. Boari. 2005. Evaluation of serum enzyme activities as predictors of passive transfer status in lambs. J. Am. Vet. Med. Assoc. 226:951-955.   DOI   ScienceOn