Browse > Article
http://dx.doi.org/10.5713/ajas.2011.r.04

Reducing CH4 Emissions from Grazing Ruminants in New Zealand: Challenges and Opportunities  

Clark, H. (New Zealand Agricultural Greenhouse Gas Research Centre, Grasslands Research Centre)
Kelliher, F. (AgResearch Limited, Lincoln Research Centre)
Pinares-Patino, C. (AgResearch Limited, Grasslands Research Centre)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.2, 2011 , pp. 295-302 More about this Journal
Abstract
Almost half of New Zealand's greenhouse gas emissions arise from agriculture and enteric methane ($CH_4 $) emissions arising from ruminant animals constitute 30% of total $CO_2$-e emissions. Enteric $CH_4$ emissions have increased by 9% since 1990. Extensive research has been undertaken to develop reliable methods for measuring enteric $CH_4$ emissions. New Zealand studies using the SF6 tracer technique suggest that on average this technique yields similar values to the 'gold' standard of calorimetry, but with a larger variance. National inventory estimates based on results obtained using the $SF_6$ technique will therefore overestimate the uncertainty. Mitigating emissions can be achieved by changing feed type but there are practical and cost barriers to the use of alternative feeds. Forages containing condensed tannins do reduce emissions but are agronomically inferior to the forages currently used. Rumen additives have shown some success in-vitro but results from in-vivo trials with both monensin and fumaric acid have been disappointing. The development of methods for directly manipulating rumen microorganisms are at an early stage and work to develop vaccines that can inhibit methanogenesis has yielded mixed results. The successful identification of sheep with contrasting $CH_4$ yields raises the possibility that, in the long term, a breeding approach to $CH_4$ mitigation is feasible.
Keywords
Methane; Rumen; Feed; Monensin; Fumarate; Vaccination; Breeding;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Molano, G., T. Renard and H. Clark. 2003: The effect of level of feeding and forage quality on methane emissions by wether lambs. Proceedings of the 2nd Joint Australia and New Zealand Forum on Non-$CO_2$ Greenhouse Gas Emissions from Agriculture (Ed. R. Eckard and B. Slattery). Cooperative Research Centre for Greenhouse Gas Accounting, Canberra, Australia. p. F14.
2 Nkrumah, J. D., E. K. Okine, G. W. Mathison, K. Schmid, C. Li, J. A. Basarab, M. A. Price, Z. Wang and S. S. Moore., 2006. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 84:145-153.
3 Grainger, C., T. Clarke, S. M. McGinn, M. J. Auldist, K. A. Beauchemin, M. C. Hannah, G. C. Waghorn, H. Clark and R. J. Eckard. 2007. Methane emissions from dairy cows measured using the sulfur hexafluoride $(SF_6)$ tracer and chamber techniques. J. Dairy Sci. 90:2755-2766.   DOI   ScienceOn
4 Intergovernmental Panel on Climate Change 2007: Summary for Policymakers. In: Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Mille). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf 2007
5 Johnson, K., M. Huyler, H. Westberg, B. Lamb and P. Zimmerman. 1994. "Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique". Environ. Sci. Technol. 28(2):359-362.   DOI   ScienceOn
6 Johnson, K. and D. Johnson. 1995. "Methane emissions from cattle". J. Anim. Sci. 73(8):2483.
7 Kelliher, F. M., H. Clark, M. H. Smith, K. R. Lassey and R. Sedcole. 2009. Reducing uncertainty of the enteric methane emissions inventory. A report prepared for the New Zealand Ministry of Agriculture and Forestry, Wellington.
8 Kirchgessner, M., W. Windisch and H. L. Muller. 1995. Nutritional factors for the quantification of methane production. In: Ruminant physiology: digestion, metabolism, growth and reproduction (Ed. W. von Engelhardt, S. Leonhard-Marek, G. Breves and D. Gieseke). Ferdinand Enke Verlag, Stuttgart, 333-348.
9 Kolver, E. S., P. W. Aspin, G. N. Jarvis, K. M. Elborough and J. R. Roche. 2004: Fumarate reduces methane production from pasture fermented in continuous culture. Proceedings of the New Zealand Society of Animal Production 64:155-159.
10 Lassey, K., M. Ulyatt, R. Martin, C. Walker and I. David Shelton. 1997. Methane emissions measured directly from grazing livestock in New Zealand. Atmos. Environ. 31:2905-2914.   DOI   ScienceOn
11 Attwood, G. and C. S. McSweeney. 2008. Methanogen genomics to discover targets for methane mitigation technologies and options for alternative $H_2$ utilisation in the rumen. Aust. J. Exp. Agric. 48:28-37.   DOI   ScienceOn
12 Beauchemin, K. A., M. Kreuzer, F. O'Mara and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 48:21-27.   DOI   ScienceOn
13 Beever, D. E., D. J. Thomson, M. J. Ulyatt, S. B. Cammell and M. C. Spooner. 1985. The digestion of fresh perennial (Lolium perenne L. Cv. Melle) and white clover (Trifolium repens L. Cv. Blanca) by growing cattle fed indoors. Br. J. Nutr. 54:763-775.   DOI   ScienceOn
14 Clark, H. 2009. Greenhouse gas emissions from ruminant livestock; are they important and can we reduce them? Proceedings from International Symposium on Impact of Global Warming on Food and Agriculture, Tsukuba, Japan.
15 Clark, H., C. Pinares-Patino and C. deKlein. 2005. Methane and nitrous oxide emissions from grazed grasslands In: Grassland: A Global Resource (Ed. D. A. McGilloway). Wageningen Academic Publishers, Wageningen, The Netherlands. pp. 279-293.
16 Wright, A. D. G., P. Kennedy, C. J. O'Neill, A. F. Toovey, S. Popovski, S. M. Rea, C. L. Pimm and L. Klein. 2004. Reducing methane emissions in sheep by immunization against rumen methanogens. Vaccine 22:3976-3985.   DOI   ScienceOn
17 Cord-Ruwisch, R., H-J. Seitz and R. Conrad. 1988: The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the electron acceptor. Arch. Microbiol. 149:350-357. Doi: 10.1007/BF00411655   DOI
18 Goodrich, R. D., J. E. Garrett, D. R. Ghast, M. A. Kirich, D. A. Larson and J. C. Meiske. 1984: Influence of monensin on the performance of cattle. J. Anim. Sci. 58:1484-1498.
19 Grainger, C., M. J. Auldist, T. Clarke, K. A. Beauchemin, S. M. McGinn, M. C. Hannah, R. J. Eckard and L. B. Lowe. 2008: Use of monensin controlled-release capsules to reduce methane emissions and improve milk production of dairy cows offered pasture supplemented with grain. J. Dairy Sci. 91:1159-1165. doi:10.3168/jds.2007-0319   DOI   ScienceOn
20 Wolin, M. J., T. L. Miller and C. S. Stewart. 1997: Microbemicrobe interactions. In: The rumen microbial ecosystem. Blackie Academic and Professional (Ed. P. N. Hobson and C. S. Stewart), London. 467-491.
21 Steinfeld, H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales, C. deHaan. 2006. Livestock's Long Shadow; environmental issues and options. FAO, 2006.
22 van Nevel, C. J. and D. I. Demeyer. 1996: Control of rumen methanogenesis. Environ. Monit. Assess. 42:73-97.   DOI   ScienceOn
23 Tedeschi, L. O., D. G. Fox and T. P. Tylutki. 2003: Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 32:1591-1602.   DOI   ScienceOn
24 Thauer, R. K., K. Jungermann and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100-180.
25 van Dorland, H. A., H. R. Wettstein, H. Leuenberger and M. Kreuzer. 2007: Effect of supplementation of fresh and ensiled clovers to ryegrass on nitrogen loss and methane emissions of dairy cows. Livest. Sci. 111:57-69.   DOI   ScienceOn
26 Vlaming, J., N. Lopez-Villalobos, I. Brookes, S. Hoskin and H. Clark. 2008: Within-and between-animal variance in methane emissions in non-lactating dairy cows. Aust. J. Exp. Agric. 48:124-127.   DOI   ScienceOn
27 Waghorn, G. C., J. L. Burke and E. S. Kolver. 2007: Principles of feeding value. In: (Ed. P. V. Rattray, I. M. Brookes, A. M. Nicol, Pasture and Supplements, New Zealand Society of Animal Production), Hamilton, New Zealand. pp. 35-60.
28 Waghorn, G. C., H. Clark, V. Taufa and A. Cavanagh. 2008: Monensin controlled-release capsules for methane mitigation in pasture-fed dairy cows. Aust. J. Exp. Agric. 48:65-68.   DOI   ScienceOn
29 Waghorn, G. C., M. H. Tavendale and D. R. Woodfield. 2002: Methanogenesis from forages fed to sheep. Proceedings of the New Zealand Grassland Association, 64:167-171.
30 Wedlock, N., G. Pedersen, M. Denis, D. Dey, P. H. Janssen and B. Buddle. 2010: Development of a vaccine to mitigate greenhouse gas emissions in agriculture: Vaccination of sheep with methanogen fractions induces antibodies that block methane production in vitro. N Z Vet. J. 58:29-36.   DOI
31 Pinares-Patino, C. and H. Clark. 2008: Reliability of the sulfur hexafluoride tracer technique for methane emission measurement from individual animals: an overview. Aust. J. Exp. Agric. 48:223-229.   DOI   ScienceOn
32 O'Hara, P., J. M. Freney and M. Ulyatt. 2003. Abatement of agricultural non-carbon dioxide greenhouse gas emissions. A study of research requirements. A report prepared for the Ministry of Agricultue and Forestry on behalf of the Convenor, Ministerial Group on Climate Change, the Minister of Agriculture, and the Primary Industries Council. May 2003, New Zealand Ministry of Agriculture and Forestry, Wellington. www.govt.nz/publications (171pp)
33 Olesen, J. E., K. Schelde, A. Weiske, M. R. Weisbjerg, W. A. H. Asman and J. Djurhuus. 2006: Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agric. Ecosyst. Environ. 112:207-220.   DOI   ScienceOn
34 Pinares-Patino, C. S., R. Baumont and C. Martin. 2003a. Methane emissions by charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can. J. Anim Sci. 83:769-777.   DOI   ScienceOn
35 Pinares-Patino, C., C. Holmes, K. Lassey and M. Ulyatt. 2007a. Measurement of methane emission from sheep by the sulphur hexafluoride tracer technique and by the calorimetric chamber: failure and success. Animal 2:141-148.
36 Pinares-Patino, C. S., M. J. Ulyatt, C. W. Holmes, T. W. Barry, and K. R. Lassey. 2003c: Persistence of the between-sheep variation in methane emission. J. Agric. Sci. Cambridge 140:227-233   DOI   ScienceOn
37 Pinares-Patino, C. S., M. J. Ulyatt, G. C. Waghorn, C. W. Holmes, T. W. Barry, K. R. Lassey and D. E. Johnson. 2003b: Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil. J. Agric. Sci. Cambridge 140:215-226.   DOI   ScienceOn
38 Lee, J. M., S. L. Woodward, G. C. Waghorn and D. A. Clark. 2004: Methane emissions by dairy cows fed increasing proportions of white clover (Trifolium repens) in pasture. Proceedings of the New Zealand Grassland Association 66:151-155.
39 Pinares-Patino, C., G. Waghorn, A. Machmuller, B. Vlaming, G. Molano, A. Cavanagh and H. Clark. 2007b: Methane emissions and digestive physiology of non-lactating dairy cows fed pasture forage. Can. J. Anim. Sci. 87:601-613.   DOI   ScienceOn
40 Leahy, S. C., W. J. Kelly, E. Altermann, R. S. Ronimus, C. J. Yeoman, D. M. Pacheco, D. Li, Z. Kong, S. McTavish, C. Sang, S. C. Lambie, P. H. Janssen, D. Dey and G. T. Attwood. 2010. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5:e8926. doi: 10.1371/journal.pone.0008926   DOI   ScienceOn
41 Martin, C., A. Ferlay, Y. Chilliard and M. Doreau. 2009. Decrease in methane emissions in dairy cows with increase in dietary linseed content. In: Proceedings of the British Society of Animal Sicence 20 March-1April 2009, Southport, UK. p. 21.
42 McAllister, T. A. and C. J. Newbold. 2008: Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 48:7-13.   DOI   ScienceOn
43 McGinn, S., K. Beauchemin, A. Iwaasa and T. McAllister. 2006. Assessment of the sulfur hexafluoride (SF6) tracer technique for measuring enteric methane emissions from cattle. J. Environ. Qual. 35:1686.   DOI   ScienceOn
44 Min, B. R., T. N. Barry, G. T. Attwood and W. C. McNabb. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol. 106:3-19.   DOI   ScienceOn