Browse > Article
http://dx.doi.org/10.5713/ajas.2010.90379

Estimation of Genetic Parameters and Trends for Weaning-to-first Service Interval and Litter Traits in a Commercial Landrace-Large White Swine Population in Northern Thailand  

Chansomboon, C. (Department of Animal Science, Kasetsart University)
Elzo, M.A. (Department of Animal Sciences, University of Florida)
Suwanasopee, T. (Department of Animal Science, Kasetsart University)
Koonawootrittriron, S. (Department of Animal Science, Kasetsart University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.23, no.5, 2010 , pp. 543-555 More about this Journal
Abstract
The objectives of this research were the estimation of genetic parameters and trends for weaning-to-first service interval (WSI), and litter traits in a commercial swine population composed of Landrace (L), Large White (T), LT, and TL animals in Chiang Mai, Northern Thailand. The dataset contained 4,399 records of WSI, number of piglets born alive (NBA), litter weight of live piglets at birth (LBW), number of piglets at weaning (NPW), and litter weight at weaning (LWW). Variance and covariance components were estimated with REML using 2-trait analyses. An animal model was used for WSI and a sire-dam model for litter traits. Fixed effects were farrowing year-season, breed group of sow, breed group of boar (litter traits), parity, heterosis (litter traits), sow age, and lactation length (NPW and LWW). Random effects were boar (litter traits), sow, permanent environment, and residual. Heritabilities for direct genetic effects were low for WSI (0.04${\pm}$0.02) and litter traits (0.05${\pm}$0.02 to 0.06${\pm}$0.02). Most heritabilities for maternal litter trait effects were 20% to 50% lower than their direct counterparts. Repeatability for WSI was similar to its heritability. Repeatabilities for litter traits ranged from 0.15${\pm}$0.02 to 0.18${\pm}$F0.02. Direct genetic, permanent environment, and phenotypic correlations between WSI and litter traits were near zero. Direct genetic correlations among litter traits ranged from 0.56${\pm}$0.20 to 0.95${\pm}$0.05, except for near zero estimates between NBA and LWW, and LBW and LWW. Maternal, permanent environment, and phenotypic correlations among litter traits had similar patterns of values to direct genetic correlations. Boar genetic trends were small and significant only for NBA (-0.015${\pm}$0.005 piglets/yr, p<0.004). Sow genetic trends were small, negative, and significant (-0.036${\pm}$0.013 d/yr, p<0.01 for WSI; -0.017${\pm}$0.005 piglets/yr, p<0.007, for NBA; -0.015${\pm}$0.005 kg/yr, p<0.01, for LBW; -0.019${\pm}$0.008 piglets/yr, p<0.02, for NPW; and -0.022${\pm}$0.006 kg/yr, p<0.003, for LWW). Permanent environmental correlations were small, negative, and significant only for WSI (-0.028${\pm}$0.011 d/yr, p<0.02). Environmental trends were positive and significant only for litter traits (p<0.01 to p<0.0003). Selection based on predicted genetic values rather than phenotypes could be advantageous in this population. A single trait analysis could be used for WSI and a multiple trait analysis could be implemented for litter traits.
Keywords
Genetic Parameters; Litter Traits; Service Interval; Swine; Trends; Tropical;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Pluske, J. R., I. H. Williams, L. J. Zak, E. J. Clowes, A. C. Cegielski and F. X. Aherne. 1998. Feeding lactating primiparous sows to establish three divergent metabolic states:III. Milk production and pig growth. J. Anim. Sci. 76:1165-1171   PUBMED   ScienceOn
2 Ehlers, M. J., J. W. Mabry, J. K. Bertrand and K. J. Stalder. 2005. Variance components and heritabilities for sow productivity traits estimated from purebred versus crossbred sows. J. Anim. Breed. Genet. 122:318-324   DOI   ScienceOn
3 Gilmour, A. R., B. J. Gogel, B. R. Cullis and R. Thompson. 2006. ASReml User Guide Release 2.0. VSN International Ltd., Hemel Hempstead, HP1 1ES, UK.
4 Hanenberg, E. H. A. T., E. F. Knol and J. W. M. Merks. 2001. Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs. Livest. Prod. Sci. 69:179-186   DOI   ScienceOn
5 Pholsing, P., S. Koonawootrittriron, M. A. Elzo and T. Suwanasopee. 2009. Genetic association between age and litter traits at first farrowing in a commercial Pietrain-Large White population in Thailand. Kasetsart J. Nat. Sci. 43:280-287
6 Thai Meteorological Department. 2009. Weather report for 1989 to 2008. Weather Station Number 327501, Chiang Mai, Thailand
7 Whittemore, C. T. 1996. Nutrition reproduction interactions in primiparous sows. Livest. Prod. Sci. 46:65-83   DOI   ScienceOn
8 Koketsu, Y. and G. D. Dial. 1997. Factors influencing the postweaning reproductive performance of sows on commercial farms. Theriogenology 47:1445-1461   DOI   ScienceOn
9 Tantasuparuk, W., N. Lundeheim, A. M. Dalin, A. Kunavongkrit and S. Einarsson. 2000a. Reproductive performance of purebred Landrace and Yorkshire sows in Thailand with special reference to seasonal influence a parity number. Theriogenology 54:461-496   DOI   ScienceOn
10 Tantasuparuk, W., N. Lundeheim, A. M. Dalin, A. Kunavongkrit, and S. Einarsson. 2000b. Effects of lactation length and weaning-to-service interval on subsequent farrowing rate and litter size in landrace and Yorkshire sows in Thailand. Theriogenology 54:1525-1536   DOI   ScienceOn
11 ten Napel, J., A. G. de Vries, G. A. Buiting, P. Luiting, J. W. Merks and E. W. Brascamp. 1995. Genetics of the interval from weaning to estrus in first-litter sows: distribution of data, direct response of selection and heritability. J. Anim. Sci. 73:2193-2203   PUBMED   ScienceOn
12 Southwood, O. I. and B. W. Kennedy. 1990. Estimation of direct and maternal genetic variance for litter size in Canadian Yorkshire and Landrace swine using an animal model. J. Anim. Sci. 68:1841-1847   PUBMED
13 Willis, H. J., L. J. Zak and G. R. Foxcroft. 2003. Duration of lactation, endocrine and metabolic state, and fertility of primiparous sows. J. Anim. Sci. 81:2088-2102   PUBMED   ScienceOn
14 Elzo, M. A. and D. L. Wakeman. 1998. Covariance components and prediction for additive and nonadditive preweaning growth genetic effects in an Angus-Brahman multibreed herd. J. Anim. Sci. 76:1290-1302   PUBMED   ScienceOn
15 SAS. 2008. SAS 9.2 Documentation. SAS Institute Inc., Cary, NC, USA. http://support.sas.com/documentation/cdl_main/index.html
16 Imboonta, N., L. Rydhmer and S. Tumwasorn. 2007. Genetic parameters and trends for production and reproduction traits in Thai landrace sows. Livest. Sci. 111:70-79   DOI   ScienceOn
17 Su, G., D. Sorensen and M. S. Lund. 2008. Variance and covariance components for liability of piglet survival during different periods. Animal 2:184-189   ScienceOn
18 Suriyasomboon, A., N. Lundeheim, A. Kunavongkrit and S. Einarsson. 2006. Effect of temperature and humidity on reproductive performance of crossbred sows in Thailand. Theriogenology 65:606-628   DOI   ScienceOn
19 Siewerdt, F. and R. A. Cardellino. 1995. The efficiency of using more than one record as the selection criteria for litter traits in pigs. Brazilian J. Genet. 18:397-403
20 Suwanasopee, T., J. W. Mabry, S. Koonawootrittriron, P. Sopanarath and S. Tumwasorn. 2005. Estimated genetic parameters of non-productive sow days related to litter size in swine raised in a tropical environment. Thai. J. Agric. Sci. 38:87-93
21 Elzo, M. A. 1990. Covariances among sire by breed group of dam interaction effects in multibreed sire evaluation procedures. J. Anim. Sci. 68:4079-4099   PUBMED
22 Chen, P., T. J. Baas, J. W. Mabry, K. J. Koehler and J. C. M. Dekkers. 2003. Genetic parameters and trends for litter traits in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J. Anim. Sci. 81:46-53   PUBMED   ScienceOn
23 Tummaruk, P., N. Lundeheim, S. Einarsson and A. M. Dalin. 2000. Reproductive performance of purebred Swedish Landrace and Swedish Yorkshire sows: II. Effect of mating type, weaning-tofirst-service Interval and lactation length. Acta Agric. Scand., Sect. A, Anim. Sci. 50:217-224   DOI   ScienceOn
24 Henderson, C. R. 1984. Applications of linear models in animal breeding. University of Guelph, Ontario, Canada
25 Tantasuparuk, W., N. Lundeheim, A. M. Dalin, A. Kunavongkrit and S. Einarsson. 2001. Weaning-to-service interval in primiparous sows and its relationship with longevity and piglet production. Livest. Prod. Sci. 69:155-162   DOI   ScienceOn
26 Kaplon, M. J., M. F. Rothschild, P. J. Berger and M. Healey. 1991. Population parameter estimates for performance and reproductive traits in Polish Large White nucleus herds. J. Anim. Sci. 69:91-98   PUBMED
27 Suwanasopee, T. 2006. Estimation of genetic parameters on weaning to estrus interval in a swine commercial farm in central part of Thailand. PhD Thesis, Kasetsart University, Bangkok, Thailand.
28 Lund, M. S., M. Puonti, L. Rydhmer and J. Jensen. 2002. Relationship between litter size and perinatal and pre-weaning survival in pigs. Anim. Sci. 74:217-222
29 Quaas, R. L. and E. J. Pollak. 1980. Mixed model methodology for farm and ranch beef cattle testing programs. J. Anim. Sci. 51:1277-1287
30 Adamec, V. and R. K. Johnson. 1997. Genetic analysis of rebreeding intervals, litter traits, and production traits in sows of the National Czech nucleus. Livest. Prod. Sci. 48:13-22   DOI   ScienceOn
31 Holm, B., M. Bakken, O. Vangen and R. Rekaya. 2005. Genetic analysis of age at first service, return rate, litter size, and weaning-to-first service interval of gilts and sows. J. Anim. Sci. 83:41-48   PUBMED   ScienceOn
32 Harville, D. A. 1977. Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc. 72:320-340   DOI   ScienceOn
33 Gilmour, A. R., R. Thompson and R. R. Cullis. 1995. AIREML, an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440-1450   DOI   ScienceOn
34 Reese, D. E., B. D. Moser, E. R. Peo Jr., A. J. Lewis, D. R. Zimmerman, J. E. Kinder and W. W. Stroup. 1982. Influence of energy intake during lactation on the interval from weaning to first estrus in sows. J. Anim. Sci. 55:590-598   PUBMED