Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80573

DNA Polymorphisms in SREBF1 and FASN Genes Affect Fatty Acid Composition in Korean Cattle (Hanwoo)  

Bhuiyan, M.S.A. (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
Yu, S.L. (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
Jeon, J.T. (Division of Applied Life Science, Gyeongsang National University)
Yoon, D. (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science)
Cho, Y.M. (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science)
Park, E.W. (Division of Animal Biotechnology, National Institute of Animal Science)
Kim, N.K. (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science)
Kim, K.S. (Department of Animal Science, Chungbuk National University)
Lee, J.H. (Division of Animal Science and Resources, College of Agriculture and Life Sciences, Chungnam National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.6, 2009 , pp. 765-773 More about this Journal
Abstract
Sterol regulatory element binding factor 1 (SREBF1) and fatty acid synthase (FASN) genes play an important role in the biosynthesis of fatty acids and cholesterol, and in lipid metabolism. This study used polymorphisms in the intron 5 of bovine SREBF1 and in the thioesterase (TE) domain of FASN genes to evaluate their associations with beef fatty acid composition. A previously identified 84-bp indel (L: insertion/long type and S: deletion/short type) of the SREBF1 gene in Korean cattle had significant associations with the concentration of stearic (C18:0), linoleic (C18:2) and polyunsaturated fatty acids (PUFA). The stearic acid concentration was 6.30% lower in the SS than the LL genotype (p<0.05), but the linoleic and PUFA contents were 11.06% and 12.20% higher in SS compared to LL (p<0.05). Based on the sequence analysis, five single nucleotide polymorphisms (SNPs) g.17924G>A, g.18043C>T, g.18440G>A, g.18529G>A and g.18663C>T in the TE domain of the FASN gene were identified among the different cattle breeds studied. Among these, only g.17924 G>A and g.18663C>T SNPs were segregating in the Hanwoo population. The g.17924G>A SNP is a non-synonymous mutation (thr2264ala) and was significantly associated with the contents of palmitic (C16:0) and oleic acid (C18:1). The oleic acid concentration was 3.18% and 2.79% higher in Hanwoo with the GG genotype than the AA and AG genotypes, respectively (p<0.05), whereas the GG genotype had 3.8% and 4.01% lower palmitic acid than in those cattle with genotype AA and AG, respectively (p<0.05). Tissue expression data showed that SREBFI and FASN genes were expressed in a variety of tissues though they were expressed preferentially in different muscle tissues. In conclusion, the 84-bp indel of SREBF1 and g.17924G>A SNP of the FASN gene can be used as DNA markers to select Hanwoo breeding stock for fatty acid composition.
Keywords
SREBF1; FASN; Fatty Acid; Polymorphism; Gene Expression; Hanwoo;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Morris, C. A., N. G. Cullen, B. G. Glass, D. L. Hyndman, T. R. Manley, S. M. Hickey, J. C. McEwan, W. S. Pitchford, C. D. K. Bottema and M. A. H. Lee. 2007. Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm. Genom. 18:64-74   DOI   ScienceOn
2 Roy, R., S. Taourit, P. Zaragoza, A. Eggen and C. Rodellar. 2005. Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): comparative analysis of the FASN gene between monogastric and ruminant species. Cytogenet. Genom. Res. 111:65-73   DOI   ScienceOn
3 Shimano, H., N. Yahagi, M. Amemiya-Kudo, A. H. Hasty, J. Osuga, Y. Tamura, F. Shionoiri, Y. Iizuka, K. Ohashi, K. Harada, T. Gotoda, S. Ishibashi, and N. Yamada. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274:35832-35839   DOI   ScienceOn
4 Woollett, L. A., D. K. Spady and J. M. Dietschy. 1992. Saturated and unsaturated fatty acid independently regulate low density lipoprotein receptor activity and production rate. J. Lip. Res. 33:77-78   DOI   PUBMED
5 Zhang, S., T. J. Knight, J. M. Reecy and D. C. Beitz. 2008. DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Anim. Genet. 39:62-70   DOI   PUBMED   ScienceOn
6 Burge, C. and S. Karlin. 1997. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268:78-94   DOI   ScienceOn
7 Casas, E., S. N. White, T. L. Wheeler, S. D. Shackelford, M. Koohmaraie, D. G. Riley, C. C. Chase, D. D. Johnson and T. P. L. Smith. 2006. Effects of calpastatin and mu-calpain markers in beef cattle on tenderness traits. J. Anim. Sci. 84:520-525   PUBMED
8 Chen, J., X. J. Yang, D. Xia, J. Chen, J. Wegner, Z. Jiang and R. Q. Zhao. 2008. Sterol regulatory element binding transcription factor 1 expression and genetic polymorphism significantly affect intramuscular fat deposition in the longissimus muscle of Erhualian and Sutai pigs. J. Anim. Sci. 86:57-63   DOI   PUBMED
9 Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to quantitative genetics (4th edn.). Longman, England
10 Lepage, G. and C. C. Roy. 1986. Notes on methodology: Direct transesterification of all classes of lipids in a one-step reaction. J. Lip. Res. 27:114-120   DOI   PUBMED   ScienceOn
11 Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599   DOI   ScienceOn
12 Roy, R., L. Ordovas, P. Zaragoza, A. Romero, C. Moreno, J. Altarriba and C. Rodellar. 2006. Association of polymorphisms in the bovine FASN gene with milk fat content. Anim. Genet. 37:215-218   DOI   ScienceOn
13 Whetsell, M. S., E. B. Rayburn and J. D. Lozier. 2003. Human health effects of fatty acids in beef. A report on 'Pasture based beef systems for Appalachia,' West Virginia University, USA
14 Roy, R., M. Gautier, H. Hayes, P. Laurent and R. Osta. 2001. Assignment of the fatty acid synthase (FASN) gene to bovine chromosome 19 (19q22) by in sito hybridization and confirmation by somatic cell hybrid mapping. Cytogenet. Cell. Genet. 93:141-142   DOI   PUBMED   ScienceOn
15 Di Statio, L., G. Destefanis, A. Brugiapaglia, A. Albera and A. Ronaldo. 2005. Polymorphism of the GHR gene in cattle and relationship with meat production and quality. Anim. Genet. 36:138-140   DOI   ScienceOn
16 Felder, T. K., K. Klein, W. Patsch and H. Oberkofler. 2005. A novel SREBP-1 splice variant: Tissue abundance and transactivation potency. Biochem. Biophys. Acta. 1731:41-47   DOI   PUBMED   ScienceOn
17 Mozaffarian, D., A. Ascherio, F. B. Hu, M. J. Stampfer and W. C. Willett. 2005. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in man. Circulation 111:257-164
18 Assaf, S., D. Hazard, F. Pitel, M. Morisson, M. Alizadeh, F. Gondret, C. Diot, A. Vignal, M. Douaire and S. Lagarrigue. 2003. Cloning of cDNA encoding the nuclear form of chicken sterol response element binding protein-2 (SREBP-2), chromosomal localization and tissue expression of chicken SREBP-1and -2 genes. Poult. Sci. 82:54-61   PUBMED
19 Rozen, S. and H. J. Skaletsky. 2000. Primer 3 on the WWW for general users and for biologist programmers. In: Bioinformatics methods and protocols: Methods in molecular biology (Ed. S. Krawetz and S. Misener). Humana Press, Totowa, NJ. pp. 365-386
20 Shimomura, I., H. Shimano, J. D. Horton, J. L. Goldstein and M. S. Brown. 1997. Differential expression of exons 1a and 1c in mRNA for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J. Clin. Invest. 99:838-845   DOI   ScienceOn
21 Kim, Y. M., J. H. Kim, S. C. Kim, H. M. Ha, Y. D. Ko and C.H. Kim. 2002. Influence of dietary addition of dried wormwood (Artemisia sp.) of the performance, carcass characteristics and fatty acid composition of muscle tissues of Hanwoo Heifers. Asian-Aust. J. Anim. Sci. 15:549-554
22 Cheong, H. S., D. Yoon, L. H. Kim, B. L. Park, H. W. Lee, C. S. Han, E. M. Kim, H. Cho, E. R. Chung, I. Cheong and H. D. Shin. 2007. Titin-cap (TCAP) polymorphisms associated with marbling score of beef. Meat Sci. 77:257-263   DOI   ScienceOn
23 Chakravarty, B., Z. Gu, S. S. Chirala, S. J. Wakil and F. A. Quiocho. 2004. Human fatty acid synthase: structure and substrate selectivity of the thioesterase domain. Proc. Natl. Acad. Sci., USA. 101:15567-15572   DOI   ScienceOn
24 Kennes, Y. M., B. D. Murphy, F. Pothier and M. F. Palin. 2001. Characterization of swine leptin (LEP) polymorphisms and their association with production traits. Anim. Genet. 32:215-218   DOI   ScienceOn
25 Brown, M. S. and J. L. Goldstein. 1997. The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane bound transcription factor. Cell. 89:331-340   DOI   ScienceOn
26 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta{C}}T$ method. Methods. 25:402-408   DOI   ScienceOn
27 Shin, S. C. and E. R. Chung. 2007a. Association of SNP marker in the leptin gene with carcass and meat quality traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20:1-6
28 Shin, S. C. and E. R. Chung. 2007b. Association of SNP marker in the thyroglobulin gene with carcass and meat quality traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20:172-177
29 Hoashi, S., N. Ashida, H. Ohsaki, T. Utsugi, S. Sasazaki, M. Taniguchi, K. Oyama, F. Mukai and H. Mannen. 2007. Genotype of bovine sterol regulatory element binding protein-1 (SREBP-1) is associated with fatty acid composition in Japanese Black cattle. Mamm. Genom. 18:880-886   DOI   ScienceOn
30 Shin, S. C. and E. R. Chung. 2007c. SNP detection of carboxypeptidase E gene and its association with meat quality and carcass traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20:328-333   DOI
31 Yang, A., T. W. Larsen, S. B. Smith and R. K. Tume. 1999. $\Delta^{9}$- desaturase activity in bovine subcutaneous adipose tissue of different fatty acid composition. Lipids. 34:971-978   DOI   ScienceOn
32 Barendse, W., R. J. Bunch, B. E. Harrison and M. B. Thomas. 2006. The growth hormone GH1: c.457C>G mutation is associated with relative fat distribution in intra-muscular and rump fat in a large sample of Australian feedlot cattle. Anim. Genet. 37:211-214   DOI   ScienceOn
33 Bonanome, A. and S. Grundy. 1988. Effect of dietary stearic acid on plasma cholesterol and lipoprotein concentrations. N. Engl. J. Med. 318:1244-1248   DOI   ScienceOn
34 Kim, J. B. and B. M. Spiegelman.1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes. Dev. 10:1096-1107   DOI   ScienceOn
35 Thaller, G., C. Kuhn, A. Winter, A. Ewald, O. Bellmann, J.Wegner, H. Zuhlke and R. Fries. 2003. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim. Genet. 34:354-357   DOI   ScienceOn