Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80292

The Effect of the Addition and Removal of Various Cryoprotectants on the Nuclear Maturation and ATP Content of Immature Porcine Oocytes  

Tsuzuki, Y. (Laboratory of Animal Reproduction, Faculty of Agriculture, University of Miyazaki)
Nozawa, K. (Laboratory of Animal Reproduction, Faculty of Agriculture, University of Miyazaki)
Ashizawa, K. (Laboratory of Animal Reproduction, Faculty of Agriculture, University of Miyazaki)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.3, 2009 , pp. 328-335 More about this Journal
Abstract
This study was undertaken to investigate the influence of exposure and removal of four different cryoprotectants (CPAs) on the ATP content of cumulus cell-enclosed (COs) and cumulus cell-denuded (DOs) immature porcine oocytes. The in vitro nuclear maturation of the COs, exposed to and removed from the CPAs was also assessed. Both COs and DOs were exposed to 1.5 M concentrations of each CPA (ethylene glycol (EG); propylene glycol (PG); dimethyl-sulfoxide (DMSO); and glycerol (G)) for durations of 5, 15, and 30 minutes at room temperature ($23.5{\pm}1.5^{\circ}C$), and immersed in physiological saline supplemented with 20% (v/v) fetal bovine serum for 5 minutes ($39^{\circ}C$) to remove each CPA. Before, during and after exposure to each CPA, the ATP content of both the COs and the DOs was measured. After removal from each CPA an aliquot of the COs was matured for 44${\pm}$2 h, and their nuclear maturation rates were measured up to the metaphase stage of the second meiotic division (the M-II stage). The maturation rates up to the M-II stage were not significantly different between all the groups that were exposed to each CPA for 5 minutes. For 15 and 30 minute exposures, the maturation rates of the COs exposed to PG, DMSO and EG were almost the same as those of the control groups; however, the rates of G group exposed for 15 and 30 minutes were significantly lower (p<0.05) than the control group. These groups were also found to have a decrease in the ATP content of COs and DOs during and after exposure for the same periods (p<0.05). In addition, although the ATP contents of the COs after exposure to EG for any period were the same as the controls, the ATP content of the DOs exposed to EG for any period were significantly lower (p<0.05) than those of the controls. When the ATP content of the COs and DOs of each CPA were compared, the DOs exposed to PG were found to have a significantly greater level (p<0.05) than DOs exposed to G for any duration. In addition, the ATP content of DOs exposed to PG for 30 min and removal was also higher (p<0.05) than when exposed to DMSO for the same period. These findings indicate that PG may be a useful CPA for the cryopreservation of immature porcine oocytes.
Keywords
Cryoprotectant; Porcine Oocytes; ATP Content;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Pedro, P. B., E. Yokoyama, S. E. Zhu, N. Yoshida, D. M. Valdez Jr., M. Tanaka, K. Edashige and M. Kasai. 2005. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Dev. 51:235-246   DOI   ScienceOn
2 Pickering, S. J., P. R. Braude, M. H. Johnson, A. Cant and J. Currie. 1990. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil. Steril. 54:102-108   PUBMED
3 Rojas, C., M. J. Palomo, J. L. Albarracín and T. Mogas. 2004. Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments. Cryobiology 49:211-220   DOI   ScienceOn
4 Russell, D. L. and R. L. Robker. 2007. Molecular mechanisms of ovulation: co-ordination though the cumulus complex. Hum. Reprod. Update 13:289-312   DOI   ScienceOn
5 Shaw, J. M. and G. M. Jones. 2003. Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos. Hum. Reprod. Update 9:583-605   DOI   ScienceOn
6 Shimizu, T. and K. Kouketsu. 1988. Reversible effects of glycerol on the metabolism of platelets kept at room temperature. Cryobiology 25:164-169   DOI   ScienceOn
7 Tsuzuki, Y., M. Ugajin and K. Ashizawa. 2008. The effect of adding glucose to the maturation medium on the nuclear maturation and ATP content of porcine oocytes. J. Mamm. Ova Res. 25:172-176   DOI   ScienceOn
8 Wani, N. A., A. K. Misra and S. N. Maurya. 2004. Maturation rates of vitrified-thawed immature buffalo (Bubalus bubalis) oocytes: effect of different types of cryoprotectants. Anim. Reprod. Sci. 84:327-335   DOI   ScienceOn
9 Wu, C., R. Rui, J. Dai, C. Zhang, S. Ju, B. Xie, X. Lu and X. Zheng. 2006. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol. Reprod. Dev. 73:1454-1462   DOI   ScienceOn
10 Agca, Y., J. Liu, A. T. Peter, E. S. Critser and J. K. Critser. 1998. Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics. Mol. Reprod. Dev. 49:408-415   DOI   ScienceOn
11 Arav, A., D. Sheshu and M. Mattioli. 1993. Osmotic and cytotoxic study of vitrification of immature bovine oocytes. J. Reprod. Fert. 99:353-358   DOI   PUBMED   ScienceOn
12 Ashwood-Smith, M. J. 1987. Machanisms of cryoprotectant action. In: Temperature and animal cells (Ed. K. Bowler and B. J. Fuller). Company of Biologist, Cambridge, pp. 395-406
13 Didion, B. A., D. Pomp, M. J. Martin, G. E. Homanics and C. L. Markert. 1990. Observations on the cooling and cryopreservation of pig oocytes at the germinal vesicle stage. J. Anim. Sci. 68:2803-2810   PUBMED
14 Fuller, B. J. 2004. Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25:375-388
15 Gupta, M. K., S. J. Uhm and H. T. Lee. 2007. Cryopreservation of immature and in vitro matured porcine oocytes by solid surface vitrification. Theriogenology 67:238-248   DOI   ScienceOn
16 Otoi, T., S. Tachikawa, S. Kondo, M. Takagi and T. Suzuki. 1994. Developmental competence of bovine oocytes frozen at different cooling rates. Cryobiology 31:344-348   DOI   ScienceOn
17 Leibo, S. P. 2008. Cryopreservation of oocytes and embryos: optimization by theoretical versus empirical analysis. Theriogenology 69:37-47   DOI   PUBMED   ScienceOn
18 Ledda, S., L. Bogliolo, S. Succu, F. Ariu, D. Bebbere, G. G. Leoni and S. Naitana. 2007. Oocyte cryopreservation: oocyte assessment and strategies for improving survival. Reprod. Fertil. Dev. 19:13-23   DOI   ScienceOn
19 Otoi, T., K. Yamamoto, N. Koyama and T. Suzuki. 1995. In vitro fertilization and development of immature and mature bovine oocytes cryopreserved by ethylene glycol with sucrose. Cryobiology 32:455-460   DOI   ScienceOn
20 Kubota, C., X. Yang, A. Dinnyes, J. Todoroki, H. Yamakuchi, K. Mizoshita, S. Inohae and N. Tabata. 1998. In vitro and in vivo survival of frozen-thawed bovine oocytes after IVF, nuclear transfer, and parthenogenetic activation. Mol. Reprod. Dev. 51:281-286   DOI   ScienceOn
21 Rittmeyer, I. C. and U. E. Nydegger. 1992. Influence of the cryoprotective agents glycerol and hydroxyethyl starch on red blood cell ATP and 2,3-diphosphoglyceric acid levels. Vox Sang 62:141-145   DOI   ScienceOn
22 Yokoo, M. and E. Sato. 2004. Cumulus-oocyte complex interactions during oocyte maturation. Int. Rev. Cytol. 235:251-291   DOI   PUBMED
23 Coticchio, G., M. A. Bonu, R. Sciajno, E. Sereni, V. Bianchi and A. Borini. 2007. Outlook: truths and myths of oocyte sensitivity to controlled rate freezing. Reprod. BioMed. Online 15:24-30   DOI   ScienceOn
24 Kleinhans, F. W. and P. Mazur. 2007. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest. Cryobiology 54:212-222   DOI   ScienceOn
25 Edashige, K. and M. Kasai. 2007. The movement of water and cryoprotectants in mammalian oocytes and embryos and its relevance to cryopreservation. J. Mamm. Ova Res. 24:18-22   DOI   ScienceOn
26 Fabbri, R., E. Porcu, T. Marsella, G. Rocchetta, S. Venturoli and C. Flamigni. 2001. Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum. Reprod. 16:411-416   DOI   ScienceOn
27 Fujihira, T., H. Nagai and Y. Fukui. 2005. Relationship between equilibration times and the presence of cumulus cells, and effect of Taxol treatment for vitrification of in vitro matured porcine oocytes. Cryobiology 51:339-343   DOI   ScienceOn
28 Tharasanit, T., S. Colleoni, G. Lazzari, B. Colenbrander, C. Galli and T. A. E. Stout. 2006. Effect of cumulus morphology and maturation stage on the cryopreservability of equine oocytes. Reprod. 132:759-769   DOI   PUBMED   ScienceOn
29 Yavin, S. and A. Arav. 2007. Measurement of essential physical properties of vitrification solutions. Theriogenology 67:81-89   DOI   ScienceOn
30 Friedler, S., L. C. Giudice and E. J. Lamb. 1988. Cryopreservation of embryos and ova. Fertil. Steril. 49:743-764   PUBMED
31 Huang, W.T. and W. Holtz. 2002. Effects of meiotic stages, cryoprotectants, cooling and vitrification on the cryopreservation of porcine oocytes. Asian-Aust. J. Anim. Sci. 15:485-493
32 Mukaida, T. and M. Kasai. 2004. Cryobiology: slow freezing and vitrification of embryos. In: A laboratory guide to the mammalian embryo (Ed. D. K. Gardner, M. Lane and A. J. Watson). Oxford University Press, Inc., New York, pp. 375-390
33 Edashige, K., M. Sakamoto and M. Kasai. 2000. Expression of mRNAs of the aquaporin family in mouse oocytes and embryos. Cryobiology 40:171-175   DOI   ScienceOn
34 Poldelski, V., A. Johnson, S. Wright, V. D. Rosa and R. A. Zager. 2001. Ethylene glycol-mediated tubular injury: identification of critical metabolites and injury pathways. Am. J. Kidney Dis. 38:339-348   DOI   ScienceOn
35 Rall, W. F. 1987. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387-402   DOI   PUBMED   ScienceOn
36 Fahy, G. M., B. Wowk, J. Wu and S. Paynter. 2004. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22-35   DOI   ScienceOn
37 Gardner, D. K., C. B. Sheehan, L. Rienzi, M. Katz-Jaffe and M. G. Larman. 2007. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology 67:64-72   DOI   ScienceOn
38 Herrick, J. R., A. M. Brad and R. L. Krisher. 2006. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reprod. 131:289-298   DOI   PUBMED   ScienceOn
39 Jain, J. K. and R. J. Paulson. 2006. Oocyte cryopreservation. Fertil. Steril. 86(Suppl. 3):1037-1046
40 Magnusson, V., W. B. Feitosa, M. D. Goissis, C. Yamada, L. M. T. Tavares, M. E. O. D'A. Assump$\c{c}$$\tilde{a}$o and J. A. Visintin. 2007. Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages. Anim. Reprod. Sci. 106:265-273   DOI   ScienceOn
41 Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73   PUBMED
42 Stachecki, J. J. and S. M. Willadsen. 2000. Cryopreservation of mouse oocytes using a medium with low sodium content: effect of plunge temperature. Cryobiology 40:4-12   DOI   ScienceOn
43 Chian, R. C., M. Kuwayama, L. Tan, J. Tan, O. Kato and T. Nagai. 2004. High survival rate of bovine oocytes matured in vitro following vitrification. J. Reprod. Dev. 50:685-696   DOI   ScienceOn
44 Nagano, M., S. Katagiri and Y. Takahashi. 2006. ATP content and maturational/developmental ability of bovine oocytes with various cytoplasmic morphologies. Zygote 14:299-304   DOI   ScienceOn
45 Ford, P., J. Merot, A. Jawerbaum, M. A. F. Gimeno, C. Capurro and M. Parisi. 2000. Water permeability in rat oocytes at different maturity stages: aquaporin-9 expression. J. Membrane Biol. 176:151-158   DOI   ScienceOn
46 Paynter, S. J. and B. J. Fuller. 2007. Cryopreservation of mammalian oocytes. Methods. Mol. Biol. 368:313-324   DOI   ScienceOn
47 Van Blerkom, J., P. W. Davis and J. Lee. 1995. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10:415-424
48 Anchordoguy, T. J., A. S. Rudolph, J. F. Carpenter and J. H. Crowe. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324-331   DOI   ScienceOn
49 Ba$\check{g}$is, H. and H. Odaman Mercan. 2005. Effect of three different cryoprotectant solutions in solid surface vitrification (SSV) techniques on the development rate of vitrified pronuclearstage mouse embryos. Turk. J. Vet. Anim. Sci. 29:621-627
50 Fahy, G. M., T. H. Lilley, H. Linsdell, M. ST. J. Douglas and H. T. Meryman. 1990. Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms. Cryobiology 27:247-268   DOI   ScienceOn
51 Downs, S. M. 1993. Factors affecting the resumption of meiotic maturation in mammalian oocytes. Theriogenology 39:65-79   DOI   ScienceOn
52 Tsuzuki, Y., M. Hisanaga, K. Ashizawa and N. Fujihara. 2001. The effects of dimethyl-sulfoxide and sucrose as a cryoprotectant on the adenosine triphosphate and ultrastructure of bovine oocytes matured in vitro. Asian-Aust. J. Anim. Sci. 14:1353-1359
53 Yamada, C., H. V. A. Caetano, R. Sim$\tilde{o}$es, A. C. Nicacio, W. B. Feitosa, M. E. O. D'$\acute{A}$. Assump$\c{c}$$\tilde{a}$o and J. A. Visintin. 2007. Immature bovine oocyte cryopreservation: comparison of different associations with ethylene glycol, glycerol and dimethylsulfoxide. Anim. Reprod. Sci. 99:384-388   DOI   ScienceOn
54 Vincent, C., S. J. Pickering and M. H. Johnson. 1990. The hardening effect of dimethylsulphoxide on the mouse zona pellucida requires the presence of an oocyte and is associated with a reduction in the number of cortical granules present. J. Reprod. Fertil. 89:253-259   DOI   PUBMED
55 Yu, Z. W. and P. J. Quinn. 1998. Solvation effects of dimethyl sulphoxide on the structure of phospholipid bilayers. Biophysic. Chem. 70:35-39   DOI   ScienceOn
56 Stojkovic, M., S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves and E. Wolf. 2001. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64:904-909   DOI   ScienceOn
57 Brevini, T. A. L., F. Cillo, S. Antonini and F. Gandolfi. 2007. Cytoplasmic remodeling and the acquisition of developmental competence in pig oocytes. Anim. Reprod. Sci. 98:23-38   DOI   ScienceOn
58 Hunter, R. H. and C. Polge. 1966. Maturation of follicular oocytes in the pig after injection of human chorionic gonadotrophin. J. Reprod. Fertil. 12:525-531   DOI   PUBMED
59 Stachecki, J. J., J. Cohen, J. Garrisi, S. Munn$\acute{e}$, C. Burgess and S. M. Willadsen. 2006. Cryopreservation of unfertilized human oocytes. Reprod. BioMed. Online 13:222-227   DOI   ScienceOn
60 Van der Elst, J., S. Nerinckx and A. C. Van Steirteghem. 1992. In vitro maturation of mouse germinal vesicle-stage oocytes following cooling, exposure to cryoprotectants and ultrarapid freezing: limited effect on the morphology of the second meiotic spindle. Hum. Reprod. 7:1440-1446
61 Edashige, K., S. Ohta, M. Tanaka, T. Kuwano, D. M. Valdez, Jr., T. Hara, B. Jin, S. Takahashi, S. Seki, C. Koshimoto and M. Kasai. 2007. The role of aquaporin 3 in the movement of water and cryoprotectants in mouse morulae. Biol. Reprod. 77:365-375   DOI   ScienceOn