Browse > Article
http://dx.doi.org/10.5713/ajas.2008.70673

A New Single Nucleotide Polymorphism in the IGF-I Gene and Its Association with Growth Traits in the Nanjiang Huang Goat  

Zhang, Chunxiang (College of Animal Science and Technology, China Agricultural University)
Zhang, Wei (College of Animal Science and Technology, China Agricultural University)
Luo, Hailing (College of Animal Science and Technology, China Agricultural University)
Yue, Wenbin (College of Animal Science and Technology, China Agricultural University)
Gao, Mingyu (College of Animal Science and Technology, China Agricultural University)
Jia, Zhihai (College of Animal Science and Technology, China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.21, no.8, 2008 , pp. 1073-1079 More about this Journal
Abstract
The objectives of this study were to identify polymorphisms of insulin-like growth factor I (IGF-I) gene and to investigate their association with growth traits in Nanjiang Huang goats. Five hundred and ninety-two animals were used to detect the polymorphisms in the complete coding sequence, part of introns and the 5'-regulatory region of the IGF-I gene by means of PCR-SSCP. A new single nucleotide polymorphism (G to C transversion) was identified at intron 4 of the IGF-I gene in the goats. Two alleles and three genotypes were observed in this group. The frequency of G and C alleles was 54.6 and 45.4%, respectively. The statistical analysis showed that polymorphism of the IGF-I gene had a significant association (p<0.05) with birth weight (BW), body weight at 6 months (W6) and at 12 months (W12), heart girth at 2 months (G2), body length at 6 months (L6), wither height at 6 months (H6) and at 12 months (H12) and heart girth at 12 months (G12). The goats with genotype CC had significantly higher BW, W6, W12, G2, L6, H6, H12 and G12 than those with genotype GC and had significantly higher W12, H6, H12 and G12 than those with genotype GG. Therefore, genotype CC may be the most advantageous for growth traits in the Nanjiang Huang goat. However, no significant association between SNP genotypes and other growth traits was observed. These results indicated that the SNP marker of the IGF-I gene may be a potential molecular marker for growth traits in Nanjiang Huang goats.
Keywords
Nanjiang Huang Goats; Insulin-like Growth Factor I; Polymorphism; Growth Traits; PCR-SSCP;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Shoshana, Y., J. L. Liu and L. R. Derek. 2000. The growth hormone/insulin-like growth factor-I system: implications for organ growth and development. Pediatr. Nephrol. 14:544-549.   DOI   ScienceOn
2 Schibler, L., D. Vaiman, A. Oustry, C. Giraud-Delville and E. P. Cribiu. 1998. Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res. 8:901-915.   DOI
3 Schwerin, M. T., G. Brockmann, J. Vanselow and H. M. Seyfert. 1995. Perspectives of molecular genome analysis in livestock improvement -an overview. Anim. Res. Dev. 42:14-26.
4 SAS. 2001. User's Guide: Statistics. Version 8.2, Cary, NC, USA.
5 Clemmons, D. R., M. Dehoff, R. McCusker, R. Elgin and W. Busby. 1987. The role of insulin-like growth factor I in the regulation of growth. J. Anim. Sci. 65(2):168-179.   DOI
6 Duclos, M. J., C. Beccavin and J. Simon. 1999. Genetic models for study of Insulin-like growth factors (IGF) and muscle development in birds compared to mammals. Domest. Anim. Endocrinol. 17:231-243.   DOI   ScienceOn
7 Jiang, Y. L., X. Z. Fan, L. R. Xiao, R. L. Xiang, X. X. Hu, L. X. Du and C. X. Wu. 2002. Association of T-A mutation in the promoter region of myostatin gene with birth weight in Yorkshire pigs. Asian-Aust. J. Anim. Sci. 15:1543-1545.   과학기술학회마을   DOI
8 Lan, X. Y., C. Y. Pan, H Chen, C. Z. Lei, L. S. Hua, X. B. Yang, G. Y. Qiu, R. F. Zhang and Y. Z. Lun. 2007. Ddel polymorphism in coding region of goat POU1F1 gene and its association with production traits. Asian-Aust. J. Anim. Sci. 20(9):1342-1348.   과학기술학회마을   DOI
9 Mikawa, S., G. Yoshikawa, H. Aoki, Y. Yamano, H. Sakai and T. Komano. 1995. Dynamic aspects in the expression of the goat insulin-like growth factor-I (IGF-I) gene: diversity in transcription and post-transcription. Biosci. Biotechnol. Biochem. 59(1):87-92.   DOI   ScienceOn
10 Gluckman, P. D. 1995. The endocrine regulation of fetal growth in late gestation: the role of Insulin-like growth factors. J. Clin. Endrocrinol. Metabol. 80:1047-1050.   DOI   ScienceOn
11 Missohou, A., E. Talaki and I. Mamam Laminon. 2006. Diversity and genetic relationships among seven West African goat breeds. Asian-Aust. J. Anim. Sci. 19(9):1245-1251.   과학기술학회마을   DOI
12 Harding, J. E., L. Liu, P. C. Evans and P. D. Gluckman. 1994. Insulin-like growth factor I alters feto-placental protein and carbohydrate metabolism in fetal sheep. J. Endrocrinol. 134:1509-1514.   DOI   ScienceOn
13 Jensen, E. C., J. H. Harding, M. K. Bauer and P. D. Gluckman. 1999. Metabolic effects of IGF-I in the growth retarded fetal sheep. J. Endrocrinol. 161:485-494.   DOI   ScienceOn
14 Jia, C. L., N. Li, X. B. Zhao, X. P. Zhu and Z. H. Jia. 2005. Association of single nucleotide polymorphisms in exon 6 region of BMPIP gene with litter size traits in sheep. Asian-Aust. J. Anim. Sci. 18(10):1375-1378.   과학기술학회마을   DOI
15 Lok, F., J. A. Owens, L. Mundy, J. S. Robinson and P. C. Owens. 1996. Insulin-like growth factor I promotes growth selectively in fetal sheep in late gestation. Am. J. Physiol. 270:R1148-R1155.
16 Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch, C. Hansen and S. S. Moore. 2004. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J. Anim. Sci. 82:1-7.   DOI
17 Liu, H. Y., N. Li, C. L. Jia, X. P. Zhu and Z. H. Jia. 2007. Effect of the polymorphisms of keratin associated protein 8.2 gene on fibre traits in inner mongolia cashmere goats. Asian-Aust. J. Anim. Sci. 20(6):821-826.   과학기술학회마을   DOI
18 Curi, R. A., H. N. Oliveira, A. C. Silveira and C. R. Lopes. 2005b. Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livest. Prod. Sci. 94:159-167.   DOI   ScienceOn
19 Bennett, A. K., P. Y. Hester and D. E. Spurlock. 2006. Polymorphisms in vitamin D receptor, osteopontin, insulin-like growth factor 1 and insulin, and their associations with bone, egg and growth traits in a layer--broiler cross in chickens. Anim. Genet. 37:283-286.   DOI   ScienceOn
20 Curi, R. A., H. N. Oliveira, A. C. Silveira and C. R. Lopes. 2005a. Effects of polymorphic microsatellites in the regulatory region of IGF-I and GHR on growth and carcass traits in beef cattle. Anim. Genet. 36:58-62.   DOI   ScienceOn
21 Daughaday, W. H. and P. Rotwein. 1989. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr. Rev. 10:68-91.   DOI   ScienceOn
22 Froesch, E. R., C. Schmid, J. Schwander and J. Zapf. 1985. Actions of insulin-like growth factors. Annu. Rev. Physiol. 47:443-467.   DOI   ScienceOn
23 Ge, W., M. E. Davis and H. C. Hines. 1997. Two SSCP alleles identified in the 5'-flanking region of bovine IGF1 gene. Anim. Genet. 28:155-156.
24 Ge, W., M. E. Davis, H. C. Hines, K. M. Irvin and R. C. Simmen. 2001. Association of a genetic marker with blood serum insulin-like growth factor-I concentration and growth traits in Angus cattle. J. Anim. Sci. 79:1757-1762.   DOI
25 Dekker, J. C. M. 2004. Commercial application of marker- and gene assisted selection in livestock strategies and lessons. J. Anim. Sci. 82:313-328.
26 DNASTAR. 2001. Introductory of the LASERGENE system. DNASTAR. Inc. Madison. USA.
27 Casas, E., A. Prill, S. G. Price, A. C. Clutter and B. W. Kirkpatrick. 1997. Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Anim. Genet. 28:88-93.   DOI   ScienceOn
28 Yakar, S., C. J. Rosen, W. G. Beamer, C. L. Ackert-Bicknell, Y. Wu, J. L. Liu, G. T. Ooi, J. Setser, J. Frystyk, Y. R. Boisclair and D. Le Roith. 2002. Circulating levels of IGF-I directly regulate bone growth and density. J. Clin. Invest. 110:771-781.   DOI
29 Amills, M., N. Jimenez, D. Villalba, M. Tor, E. Molina, D. Cubilo, C. Marcos, A. Francesch, A. Sanchez and J. Estany. 2003. Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poult. Sci. 82:1485-1493.   DOI
30 Burkhard, T., K. Daniela and C. Sonia. 2005. Growth hormone/insulin-like growth factor-I system in children with chronic renal failure. Pediatr. Nephrol. 20:279-289.   DOI   ScienceOn
31 Chung, E. R. and W. T. Kim. 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Aust. J. Anim. Sci. 18(8):1061-1065.   과학기술학회마을   DOI
32 Breier, B. H., P. D. Gluckman and J. J. Mass. 1988. Plasma concentrations of insulin-like growth factor I and insulin in the infant calf: ontogeny and influence of alter nutrition. J. Endocrinol. 119:43-50.   DOI   ScienceOn
33 Arora, R. and S. Bhatia. 2006. Genetic diversity of magra sheep from India using microsatellite analysis. Asian-Aust. J. Anim. Sci. 19(7):938-942.   과학기술학회마을   DOI
34 Baker, J., J. P. Liu, E. J. Robertson and A. Efstratiadis. 1993. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73-82.   DOI
35 Zapf, J. and E. R. Froesch. 1999. Insulin-like growth factor-I actions on somatic growth. In: Handbook of Physiology (Ed. J. L. Kostyo). Oxford University Press, New York.
36 Baxter, R. C. 1985. The somatomedins: insulin-like growth factors. Adv. Clin. Chem. 25:49-115.
37 Zhang, E. P., Y. L. Chen, Z. F. Yuan and Y. N. Zhang. 2005. Study on body weight trait by microsatellite markers in Nanjiang Huang goat. Chinese Agric. Sci. 21(12):1-4.
38 Yilmaz, A., M. E. Davis, H. Hines and H. Chung. 2005. Detection of two nucleotide substitutions and putative promoters in the 5' flanking region of the ovine IGF-I gene. J. Appl. Genet. 46:307-309.
39 Zhou, H., A. D. Mitchell, J. P. McMurtry, C. M. Ashwell and S. J. Lamont. 2005. Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poult. Sci. 84:212-219.   DOI
40 Seo, D. S., J. S. Yun, W. J. Kang, G. J. Jeon, K. C. Hong and Y. Ko. 2001. Association of insulin-like growth factor-I (IGF-I) gene polymorphism with serum IGF-I concentration and body weight in Korean Native Ogol chicken. Asian-Aust. J. Anim. Sci. 14(7):915-921.   DOI