Browse > Article
http://dx.doi.org/10.5713/ajas.2007.1100

Effects of Dietary Lysine and Microbial Phytase on Growth Performance and Nutrient Utilisation of Broiler Chickens  

Selle, P.H. (Faculty of Veterinary Science, The University of Sydney)
Ravindran, V. (Institute of Food, Nutrition and Human Health, Massey University)
Ravindran, G. (Institute of Food, Nutrition and Human Health, Massey University)
Bryden, W.L. (School of Animal Studies, University of Queensland)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.7, 2007 , pp. 1100-1107 More about this Journal
Abstract
The effects of offering broilers phosphorus-adequate diets containing 10.0 and 11.8 g/kg lysine, without and with 500 FTU/kg exogenous phytase, on growth performance and nutrient utilisation were determined. Each of the four experimental diets was offered to 6 replicates of 10 birds from 7 to 28 days of age. Effects of treatment on performance, apparent metabolisable energy, apparent ileal digestibility of amino acids and bone mineralisation were examined. Both additional lysine and phytase supplementation improved (p<0.05) weight gain and feed efficiency, with interactions (p<0.05), as phytase responses were more pronounced in lysine-deficient diets. Phytase improved (p<0.05) apparent metabolisable energy, which was independent of the dietary lysine status. Bone mineralisation, as determined by percentage toe ash, was not affected by treatment, which confirms the phosphorus-adequate status of the diets. Phytase increased (p<0.05) the apparent ileal digestibility of the sixteen amino acids assessed. Unexpectedly, however, the dietary addition of 1.8 g/kg lysine, as lysine monohydrochloride, increased (p<0.05) the ileal digestibility of lysine per se and also that of isoleucine, methionine, phenylalanine, valine, aspartic acid, glutamic acid and tyrosine. In addition, there were significant interactions (p<0.05) between additional lysine and phytase supplementation for arginine, lysine, phenylalanine, aspartic acid, glutamic acid, glycine and serine digestibilities, with the effects of phytase being more pronounced in lysine-deficient diets. The possible mechanisms underlying the increases in amino acid digestibility in response to additional lysine and the interactions between lysine and microbial phytase in this regard are discussed. Also, consideration is given to the way in which phytate and phytase may influence ileal digestibility of amino acids.
Keywords
Amino Acid Digestibility; Broiler Chickens; Lysine; Phytase;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Demjen, A. P. and L. U. Thompson. 1991. Calcium and phytic acid independently lower the glycemic response to a glucose load. Proceedings, 34th Canadian Federation of Biological Sciences, p53 (Abstr).
2 Eggum, B. O. and I. Jacobsen. 1976. Amino acid digestibility of protein concentrates given separately or together with cereal grains. J. Sci. Food Agric. 27:1190-1196.   DOI
3 Engelen, A. J., F. C. van der Heeft, P. H. G. Randsdorp and E. L. C. Smit. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77:760-764.
4 Cowieson, A. J., T. Acamovic and M. R. Bedford. 2004. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br. Poult. Sci. 45:101-108.   DOI   ScienceOn
5 Croom, W. J., J. Brake, B. A. Coles, G. B. Havenstein, V. L. Christensen, B. W. McBride, E. D. Peebles and I. L. Taylor. 1999. Is intestinal absorption capacity rate-limiting for performance in poultry? J. Appl. Poult. Res. 8:242-252.   DOI
6 Ganapathy, V., M. Brandsch and F. H. Leibach. 1994. Intestinal transport of amino acids. In: Physiology of the Gastrointestinal Tract. Third edition, pp. 1773-1794 (Ed. L. R. Johnson) Raven Press, New York.
7 Haydon, K. D. and J. W. West. 1990. Effect of dietary electrolyte balance on nutrient digestibility at the end of the small intestine and over the total digestive tract in growing pigs. J. Anim. Sci. 68:3687-3693.   DOI
8 Munck, B. G. 1989. Amino acid transport across the hen colon: interactions between leucine and lysine. Amer. J. Physiol. (Gastro. Liver Physiol. 19) 256:G532-G539.   DOI
9 Ganapathy, V. and F. H. Leibach. 1985. Is intestinal peptide transport energized by a proton gradient? Amer. J. Physiol. (Gastro. Liver Physiol. 12) 249:G153-G160.
10 Simons, P. C. M., H. A. J. Versteegh, A. W. Jongbloed, P. A Kemme, P. Slump, K. D. Bos, M. G. E. Wolters, R. F. Beudeker and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64:525-540   DOI   ScienceOn
11 Nyachoti, C. M., C. F. M. de Lange, B. W. McBride and H. Schulze. 1997. Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Can. J. Anim. Sci. 77:149-163.   DOI   ScienceOn
12 Johnston, S. L., S. B. Williams, L. L. Southern, T. D. Bidner, L. D. Bunting, J. O. Matthews and B. M Olcott. 2004. Effect of phytase addition and dietary calcium and phosphorus levels on plasma metabolites and ileal and total tract nutrient digestibility in pigs. J. Anim. Sci. 82:705-714.   DOI
13 Kies, A. K., W. J. J. Gerrits, J. W. Schrama, M. J. W. Heetkamp, K. L. van der Linden, T. Zandstra and M. W. A. Verstegen. 2005. Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. J. Nutr. 135:1131-1138.   DOI
14 Iji, P. A., A. Saki and D. R. Tivey. 2001. Body and intestinal growth of broiler chicks on a commercial starter diet. 3. Development and characteristics of tryptophan transport. Br. Poult. Sci. 42:523-529.   DOI   ScienceOn
15 Wise, A. 1983. Dietary factors determining the biological activity of phytates. Nutr. Abstr. Rev. Clin. Nutr. 53:791-806.
16 Jaso, M. J., M. Vial and M. Moreto. 1995. Hexose accumulation by enterocytes from the jejunum and rectum of chickens adapted to high and low NaCl intakes. Pflugers Archiv 429:511-516.   DOI   ScienceOn
17 Johnson, R. J. and H. Karunajeewa. 1985. The effects of dietary minerals and electrolytes on the growth and physiology of the young chick. J. Nutr. 115:1680-1690.   DOI
18 Welsch, C. A., P. A. Lachance and B. P. Wasserman. 1989. Dietary phenolic compounds: Inhibition of $Na^+$-dependent glucose uptake in rat intestinal brush border membrane vesicles. J. Nutr. 119:1698-1704.   DOI
19 Selle, P. H., V. Ravindran, P. H. Pittolo and W. L. Bryden. 2003b. Effects of phytase supplementation of diets with two tiers of nutrient specifications on growth performance and protein efficiency ratios of broiler chickens. Asian-Aust. J. Anim. Sci. 16:1158-1164   과학기술학회마을   DOI
20 Torras-Llort, M., D. Torrent, J. F. Soriano-Garcia, J. L. Gelpi, R. Estevez, R. Ferrer, M. Palacin and M. Moreto. 2001. Sequential amino acid exchange across $b^{0,+}$-like system in chicken brush border jejunum. J. Memb. Biol. 180:213-220.   DOI   ScienceOn
21 Um, J. S., H. S. Lim, S. H. Ahn and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian-Aust. J. Anim. Sci. 13:824-829.   DOI
22 Selle, P. H., V. Ravindran, R. A. Caldwell and W. L. Bryden. 2000. Phytate and phytase: consequences for protein utilisation. Nutr. Res. Rev. 13:255-278.   DOI   ScienceOn
23 Rickard, S. E. and L. U. Thompson. 1997. Interactions and biological effects of phytic acid. In: Antinutrients and Phytochemicals in Food (Ed. F. Shahidi) pp. 294-312. American Chemical Society, Washington DC.
24 Paik, I. K. 2003. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian-Aust. J. Anim. Sci. 16:124-135.   과학기술학회마을   DOI
25 Potter, L. M. 1988. Bioavailability of phosphorus from various phosphates based on body weight and toe ash measurements. Poult. Sci. 67:96-102.   DOI   ScienceOn
26 Ravindran, V., P. C. H. Morel, G. G. Partridge, M. Hruby and J. S. Sands. 2006. Influence of an E. coli-derived phytase on nutrient utilization in broiler starters fed diets containing graded levels of phytate. Poult. Sci. 85:82-89.   DOI
27 Torras-Llort, M., D. Torrent, J. F. Soriano-Garcia, R. Ferrer and M. Moreto. 1998. Effect of a lysine-enriched diet on L-lysine transport by the brush-border membrane of the chicken jejunum. Amer. J. Physiol. (Regul. Integr. Comp. Physiol. 43) 274:R69-R75.
28 Thompson, L. U., C. L. Button and D. J. A. Jenkins. 1987. Phytic acid and calcium affect the in vitro rate of navy bean starch digestion and blood glucose responses in humans. Am. J. Clin. Nutr. 46:467-473.   DOI
29 Sklan, D. and Y. Noy. 2000. Hydrolysis and absorption in the small intestine of posthatch chicks. Poult. Sci. 79:1306-1310.   DOI
30 Tao, R., R. J. Belzile and G. J. Brisson. 1971. Amino acid digestibility of rapeseed meal fed to chickens: effects of fat and lysine supplementation. Can. J. Anim. Sci. 51:705-709.   DOI
31 Selle, P. H., V. Ravindran, G. Ravindran, P. H. Pittolo and W. L. Bryden. 2003a. Influence of phytase and xylanase supplementation on growth performance and nutrient utilisation of broilers offered wheat based diets. Asian-Aust. J. Anim. Sci. 16:394-402.   과학기술학회마을   DOI
32 Singh, P. K., V. K. Khatta, R. S. Thakur, S. Dey and M. L. Sangwan. 2003. Effect of phytase supplementation on the performance of broiler chickens fed maize and wheat based diets with different levels of non-phytate phosphorus. Asian-Aust. J. Anim. Sci. 16:1642-1649.   과학기술학회마을   DOI
33 Selle, P. H., V. Ravindran, W. L. Bryden and T. Scott. 2006. Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: a review. J. Poult. Sci. 43:89-103.   DOI   ScienceOn
34 Selle, P. H. and V. Ravindran. 2007. Review. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1-41.   DOI   ScienceOn
35 Humphrey, B. D., C. B. Stephensen, C. C. Calver and K. C. Klasing. 2006. Lysine deficiency and feed restriction independently alter cationic amino acid expression in chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. Part A 143:218-227.   DOI   ScienceOn
36 Gagne, F., J. J. Matte, G. Barnett and C. Pomar. 2002. The effect of microbial phytase and feed restriction on protein, fat and ash deposition in growing-finishing pigs. Can. J. Anim. Sci. 82:551-558.   DOI   ScienceOn
37 Gal-Garber, O., S. J. Mabjeesh, D. Sklan and Z. Uni. 2003. Nutrient transport in the small intestine: $Na^+$,$K^+$-ATPase expression and activity in the small intestine of the chicken as influenced by dietary sodium. Poult. Sci. 82:1127-1133.   DOI