Browse > Article
http://dx.doi.org/10.5713/ajas.2007.1057

Phylogenetic Analysis of 16S rDNA Sequences Manifest Rumen Bacterial Diversity in Gayals (Bos frontalis) Fed Fresh Bamboo Leaves and Twigs (Sinarumdinaria)  

Deng, Weidong (Yunnan Provincial Laboratory of Animal Nutrition and Feed Science Yunnan Agricultural University)
Wanapat, Metha (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
Ma, Songcheng (Faculty of Animal Science, Yunnan Agricultural University)
Chen, Jing (Faculty of Animal Science, Yunnan Agricultural University)
Xi, Dongmei (Faculty of Animal Science, Yunnan Agricultural University)
He, Tianbao (Nujiang District Animal Science and Veterinary Bureau)
Yang, Zhifang (Nujiang District Animal Science and Veterinary Bureau)
Mao, Huaming (Yunnan Provincial Laboratory of Animal Nutrition and Feed Science Yunnan Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.7, 2007 , pp. 1057-1066 More about this Journal
Abstract
Six male Gayal (Bos frontalis), approximately two years of age and with a mean live weight of $203{\pm}17$ kg ($mean{\pm}standard\;deviation$), were housed indoors in metabolism cages and fed bamboo (Sinarundinaria) leaves and twigs. After an adjustment period of 24 days of feeding the diet, samples of rumen liquor were obtained for analyses of bacteria in the liquor. The diversity of rumen bacteria was investigated by constructing a 16S rDNA clone library. A total of 147 clones, comprising nearly full length sequences (with a mean length of 1.5 kb) were sequenced and submitted to an on-line similarity search and phylogenetic analysis. Using the criterion of 97% or greater similarity with the sequences of known bacteria, 17 clones were identified as Ruminococcus albus, Butyrivibrio fibrosolvens, Quinella ovalis, Clostridium symbiosium, Succiniclasticum ruminis, Selenomonas ruminantium and Allisonella histaminiformans, respectively. A further 22 clones shared similarity ranging from 90-97% with known bacteria but the similarity in sequences for the remaining 109 clones was less than 90% of those of known bacteria. Using a phylogenetic analysis it was found that the majority of the clones identified (57.1%) were located in the low G+C subdivision, with most of the remainder (42.2% of clones) located in the Cytophage-Flexibacter-Bacteroides (CFB) phylum and one clone (0.7%) was identified as a Spirochaete. It was apparent that Gayal have a large and diverse range of bacteria in the rumen liquor which differ from those of cattle and other ruminants. This may explain the greater live weights of Gayal, compared to cattle, grazing in the harsh natural environments in which Gayal are located naturally.
Keywords
Gayal; Rumen Bacteria; 16S rDNA; Phylogenetic Analysis;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Von Wintzingerode, F., U. B. Goebel and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213-229.   DOI   ScienceOn
2 Koike, S., S. Yoshitani, Y. Kobayashi and K. Tanaka. 2003b. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol. Lett. 229:23-30.   DOI   ScienceOn
3 Nelson, K. E., S. H. Zinder, I. Hance, P. Burr, D. Odongo, D. Wasawo, A. Odenyo and R. Bishop. 2003. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ. Microbiol. 5:1212-1220.   DOI   ScienceOn
4 Giasuddin, M. and M. R. Islam. 2003. Physical feature, physicalogical character and behavior study of gayal (Bos frontalis). Asian-Aust. J. Anim. Sci. 16:1599-1603.   과학기술학회마을   DOI
5 Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso and M. Wattiaux. 2006a. Effects of urea level and sodium dl-malate in concentrate containing high cassava chip on ruminal fermentation efficiency, microbial protein synthesis in lactating dairy cows raised under tropical condition. Asian-Aust. J. Anim. Sci. 19:837-844.   과학기술학회마을   DOI
6 Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-847.   DOI   ScienceOn
7 Shin, E. C., B. R. Choi, W. J. Lim, S. Y. Hong, C. L. An, K. M. Cho, Y. K. Kim, J. M. An, J. M. Kang, S. S. Lee, H. Kim and H. D. Yun. 2004a. Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe. 10:313-319.   DOI   ScienceOn
8 Shin, E. C., K. M. Cho, W. J. Lim, S. Y. Hong, C. L. An, E. J. Kim, Y. K. Kim, B. R. Choi, J. M. An, J. M. Kang, H. Kim and H. D. Yun. 2004b. Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences. J. Appl. Microbiol. 97:378-383.   DOI   ScienceOn
9 An, D., X. Dong and Z. Dong. 2005. Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses. Anaerobe. 11:207-215.   DOI   ScienceOn
10 Amann, R. I., W. Ludwig and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
11 AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia.
12 Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for recombinant plasmid DNA. Nucl. Acids Res. 7:1513-1523.   DOI   ScienceOn
13 Sylvester, J. T., S. K. R. Karnati, Z. Yu, M. Morrison and J. L. Firkins. 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 134:3378-3384.   DOI
14 Goering, H. K. and P. J. Van Soest. 1970. Forage Fiber Analysis (Apparatus, Reagent, Procedures and Some Application): Agric. Handbook No. 379. ARS, USDA, Washington, D. C.
15 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evol. 39:783-791.   DOI   ScienceOn
16 Garner, M. R., J. F. Flint and J. B. Russell. 2002. Allisonella histaminiformans gen. nov., sp. nov. a novel bacterium that produces histamine, utilizes histidine as its sole energy source, and could play a role in bovine and equine laminitis. Syst. Appl. Microbiol. 25:498-506.   DOI   ScienceOn
17 Edwards, J. E., N. R. McEwan, A. J. Travis and R. J. Wallace. 2004. 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek. 86:263-281.   DOI
18 Deng, W. D., L. P. Wang, S. C. Ma, B. Jin, T. B. He, Z. F. Yang, H. M. Mao and M. Wanapat. 2007. Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): rumen function, digestibilities and nitrogen balance during feeding of pelleted lucerne (Medicago sativum). Asian-Aust. J. Anim. Sci. 20:900-907.   과학기술학회마을   DOI
19 Farrelly, V., F. A. Rainey and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61:2798-2801.
20 Cheng, P. 1984. Livestock Breeds of China. Animal Production and Health. Paper 46 (E, F, S). Publication by FAO, Rome.
21 Srinivas, B. and U. Krishnamoorthy. 2005. Influence of diet induced changes in rumen microbial characteristics on gas production kinetics of straw substrates in vitro. Asian-Aust. J. Anim. Sci. 18:990-996.   과학기술학회마을   DOI
22 Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003a. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86:1429-1435.   DOI   ScienceOn
23 Krause, D. O. and J. B. Russell. 1996. How many ruminal bacteria are there? J. Dairy Sci. 79:1467-1475.   DOI   ScienceOn
24 Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso, M. A. Wattiaux and P. Rowlison. 2006b. Effect of levels of sodium dl-malate supplementation on ruminal fermentation efficiency of concentrates containing high levels of cassava chip in dairy steers. Asian-Aust. J. Anim. Sci. 19:368-375.   과학기술학회마을   DOI
25 Zoetendal, E. G., A. L. Akkermans and W. M. Devos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.
26 Kobayashi, Y. 2006. Inclusion of novel bacteria in rumen microbiology: Need for basic and applied science. Anim. Sci. J. 77:375-385.   DOI   ScienceOn
27 Kocherginskaya, S. A., R. I. Aminov and B. A. White. 2001. Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe. 7:119-134.   DOI   ScienceOn
28 Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press, New York.
29 Giasuddin, M., K. S. Huque and J. Alam. 2003. Reproductive potentials of gayal (Bos frontalis) under semi-intensive management. Asian-Aust. J. Anim. Sci. 16:331-334.   과학기술학회마을   DOI
30 Mondal, M., A. Dhali, C. Rajkhowa and B. K. Prakash. 2004. Secretion patterns of growth hormone in growing captive mithuns (Bos frontalis). Zool. Sci. 21:1125-1129.   DOI   ScienceOn
31 Mao, H. M., W. D. Deng and J. K. Wen. 2005. The biology characteristics of gayal (Bos frontalis) and potential exploitation and utilization. J. Yunnan Agri. Univ. 20:258-261 (in Chinese, with English abstract).
32 Lila, Z. A., N. Mohammed, S. Kanda, M. Kurihara and H. Itabashi. 2005. Sarsaponin effects on ruminal fermentation and microbes, methane production, digestibility and blood metabolites in steers. Asian-Aust. J. Anim. Sci. 18:1746-1751.   과학기술학회마을   DOI
33 Krumholz, L. R., M. P. Bryant, W. J. Brulla, J. L. Vicini, J. H. Clark and D. A. Stahl. 1993. Proposal of Quinella ovalis gen. nov., sp. nov., Based on phylogenetic analysis. Int. J. Syst. Bacteriol. 43:293-296.   DOI   ScienceOn
34 Madden, T. L., R. L. Tatusov and J. Zhang. 1996. Application of network BLAST server. Meth. Enzymol. 266:131-141.   DOI
35 Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. P. Jr, P. R. Saxman, R. J. Farris, G. M. Garrity, G. J. Olsen, T. M. Schmidt and J. M. Tiedje. 2001. The RDP-II (Ribosomal Database Project). Nucl. Acids Res. 29:173-174.   DOI   ScienceOn
36 Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27:663-693.   DOI   ScienceOn
37 Latham, M. J., J. E. Storry and M. E. Sharpe. 1972. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl. Microbiol. 24:871-877.
38 Stahl, D. A., B. Flesher, H. R. Mansfield and L. Montgomery. 1988. Use of phylogenetically-based hybridization probes for studies of rumen microbial ecology. Appl. Environ. Microbiol. 54:1079-1084.
39 Stewart, C. S., H. J. Flint and M. P. Bryant. 1997. The rumen bacteria. In: The Rumen Microbial Ecosystem. 2nd ED. (Ed. P. N. Hobson and C. S. Stewart). Chapman and Hall, New York, pp. 10-72.
40 Suzuki, M. T. and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
41 Reysenbach, A. L., L. J. Giver, G. S. Wickham and N. R. Pace. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58:3417-3418.
42 Regensbogenova, M., N. R. McEwan, P. Javorsky, S. Kisidayova, T. Michalowski, C. J. Newbold, J. H. P. Hackstein and P. Pristas. 2004. A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. FEMS Microbiol. Lett. 238:307-313.   DOI   ScienceOn
43 Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
44 Paster, B. J., F. E. Dewhirst, W. G. Weisburg, G. J. Fraser, L. A. Tordoff, R. B. Hespell, T. B. Stanton, L. Zablen and C. R. Woese. 1991. Phylogenetic analysis of the spirochetes. J. Bacteriol. 173:6101-6109.   DOI
45 Rajkhowa, S., D. K. Sarma and C. Rajkhowa. 2006. Seroprevalence of toxoplasma gondii antibodies in captive mithuns (Bos frontalis) from India. Vet. Parasitol. 135:369-374.   DOI   ScienceOn
46 Ozutsumi, Y., K. Tajima, A. Takenaka and H. Itabashi. 2005. The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries. Biosci. Biotechnol. Biochem. 69:499-506.   DOI   ScienceOn
47 Xi, D. M., M. Wanapat, W. D. Deng, T. B. He, Z. F. Yang and H. M. Mao. 2007. Comparison of Gayal (Bos frontalis) and Yunnan Yellow Cattle (Bos taurus): in vitro dry matter digestibility and gas production for a range of forages. Asian-Aust. J. Anim. Sci. In press.   과학기술학회마을
48 White, B. A., I. K. O. Cann, S. A. Kocherginskaya, R. I. Amino, L. A. Thill, R. I. Mackie and R. Onodera. 1999. Molecular analysis of archaea, bacteria and eucarya communities in the rumen-review. Asian-Aust. J. Anim. Sci. 12:129-138.   DOI
49 Thompson, J. D., D. G. Higgins and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22:4673-4680.   DOI   ScienceOn
50 Yuangklang, C., M. Wanapat and C. Wachirapakorn. 2005. Effects of pelleted sugarcane tops on voluntary feed intake, digestibility and rumen fermentation in beef cattle. Asian-Aust. J. Anim. Sci. 18:22-26.   과학기술학회마을   DOI
51 Van Soest, P. J. 1994. Nutritional Ecology of the Ruminant. 2nd ED. Cornell University Press, Ithaca, New York.
52 Tajima, K., S. Arai, K. Ogata, T. Nagamine, H. Matsui, M. Nakamura, R. I. Aminov and Y. Benno. 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe. 6:273-284.   DOI   ScienceOn
53 Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774.   DOI   ScienceOn
54 Tajima, K., R. I. Aminov, T. Nagamine, K. Ogata, M. Nakamura, H. Matsui and Y. Benno. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29:159-169.   DOI   ScienceOn
55 Whitford, M. F., R. J. Forster, C. E. Beard, J. Gong and R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe. 4:153-163.   DOI   ScienceOn