Browse > Article
http://dx.doi.org/10.5713/ajas.2007.811

Postnatal Expression Pattern of Adipose Type Fatty Acid Binding Protein in Different Adipose Tissues of Porcine  

Xu, C.L. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University)
Wang, Y.H. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University)
Huang, Y.H. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University)
Liu, J.X. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University)
Feng, J. (Institute of Feed Science, the Key Laboratory of Molecular Animal Nutrition, Ministry of Education Zhejiang University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.6, 2007 , pp. 811-816 More about this Journal
Abstract
Adipocyte fatty acid-binding protein (A-FABP), which belongs to the FABP family, plays an essential role in long-chain fatty acid uptake and metabolic homeostasis, especially in adipose tissue. The pattern of A-FABP gene mRNA expression in different growth stages and its relation to intramuscular fat (IMF) accretion in pigs was studied. Fifteen female $Duroc{\times}Landrace{\times}Yorkshire$ pigs in five groups of three pigs each, weighing 1, 30, 50, 70 and 90 kg were used to study developmental gene mRNA expression of A-FABP in various adipose tissues by means of semi-quantitative RT-PCR. Results showed that A-FABP mRNA levels in subcutaneous and ventral adipose tissues first increased from 1 to 50 kg, then gradually declined from 50 to 90 kg. Moreover, the rank order of A-FABP mRNA levels determined in three adipose tissues was as follows: subcutaneous adipose>ventral adipose>mesenteric adipose. A-FABP mRNA expression in mesenteric adipose tissue was constant during development. In addition, a positive correlation from 1 to 50 kg BW pigs and a negative correlation from 50 to 90 kg BW between A-FABP mRNA levels in subcutaneous and ventral adipose and IMF content were found.
Keywords
A-FABP; Intramuscular Fat; Gene Expression; Fat Deposition; Pigs;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Arner, P. 1995. differences in lipolysis between human subcutaneous and omental adipose tissues. Ann. Med. 27:435-438.   DOI   ScienceOn
2 Catchpole, C. and R. A. Lawrie. 1972. Influence of muscle location on fatty acid composition of total intramuscular lipids in the pig. Anim. Prod. 14:247-252.   DOI
3 Chmurzynska, A., M. Mackowski, M. Szydlowski, J. Melonek, M. Kamyczek and R. Eckert. 2004. Polymorphism of intronic microsatellites in the A-FABP and LEPR genes and their association with productive traits in the pig. J. Anim. Feed Sci. 13:615-624.
4 Gerbens F., A. J. M. van Erp, F. L. Harders, F. J. Verburg, T. H. E. Meuwissen, J. H. Veerkamp and M. F. W. te Pas. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77:846-852.   DOI
5 Gerbens, F., F. J. Verburg, H. T. B. Van Moerkerk, B. Engel, W. Buist, J. H. Veerkamp and M. F. W. te Pas. 2001. Association of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J. Anim. Sci. 79:347-354.   DOI
6 Lee, Y. B. and R. G. Kauffman. 1974. Celluarity and lipogenic enzyme activities of porcine inramuscular adipose tissue. J. Anim. Sci. 38:538-544.   DOI
7 Liu, R., Y. C. Wang, D. X. Sun, Y. Yu and Y. Zhang. 2006. Association between polymorphisms of lipoprotein lipase gene andd chicken fat deposition. Asian-Aust. J. Anim. Sci. 19:1409-1414.   DOI
8 Meuwissen, T. H. E. and M. E. Goddard. 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol. 28(2):161-176.   DOI   ScienceOn
9 Rattink, A. P., D. J. de Koning, M. Faivre, B. Harlizius, J. A. Van Arendonk and M. A. Groenen. 2000. Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mamm. Genome. 11:656-661.   DOI   ScienceOn
10 Scheja, L., L. Makowski and T. Uysal. 1999. Altered insulin secretion associated with reduced lipolytic efficiency in aP2 -/- mice. Diabetes 48:1987-1994.   DOI   ScienceOn
11 Souza, D. N., D. W. Pethick, F. R. Dunshea, D. Suster, J. R. Pluske and B. P. Mullan. 2004. The pattern of fat and lean muscle tissue deposition differs in the different pork primal cuts of female pigs during the finisher growth phase. Livest. Prod. Sci. 91:1-8.   DOI   ScienceOn
12 Gerbens, F., A. Jansen, A. J. M. Van Erp, F. Harders, T. H. E. Meuwissen, G. Rettenberger, J. H. Veerkamp and M. F. W. te Pas. 1998. The adipocyte fatty acid-binding protein locus: Characterization and association with intramuscular fat content in pigs. Mamm. Genome. 9:1022-1026.   DOI   ScienceOn
13 Veerkmp, J. H. and R. G. H. J. Maatman. 1995. Cytoplasmic fatty acid binding proteins: Their structure and genes. Prog. Lipid Res. 34:17-52.   DOI   ScienceOn
14 Wood, J. D., M. Enser, C. B. Monsrieff and A. J. Kempster. 1988. Effects of carcass fatness and sex on the composition and quality of pig meat. Proc. 34th Int. Congr. Meat Sci. Technol. Brisbane, Australian. pp. 562-564.
15 Zeng, Y. Q., G. L. Wang, C. F. Wang, S. D. Wei, Y. Wu, L. Y. Wang, H. Wang and H. L. Yang. 2005. Genetic variation of H-FABP gene and association with intramuscular fat content in Laiwu Black and Four Western pig breeds. Asian-Aust. J. Anim. Sci. 18:13-16.   과학기술학회마을   DOI
16 Amri, E. Z., G. Ailhaud and P. A. Grimaldi. 1994. Fatty acids as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells. J. Lipid Res. 35:930-937.
17 Chen, J. F., Y. Z. Xiong, B. Zuo, R. Zheng, F. E. Li, M. G. Lei, J. L. Li, C. Y. Deng and S. W. Jiang. 2005. New evidences of effect of melanocortin-4 receptor and insulin-like growth factor 2 genes on fat deposition and carcass traits in different pig populations. Asian-Aust. J. Anim. Sci. 18:1542-1547.   과학기술학회마을   DOI
18 Gerbens, F., D. J. Koning, F. Harders, T. H. E. Meuwissen, L. L. G. Janss, M. A. M. Groenen, J. H. Veerkamp, J. A. M. VanArendonk and M. F. W. Tepas. 2000. The effect adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559.   DOI
19 Wang, B. L. and J. B. Shao. 1989. The research on the growth developmental law in the commercial lean pigs. Ning xia Agr. Ind. Technol. 10:34-38.
20 Distel, R. J., G. S. Robinson and B. M. Spiegelman. 1992. Fatty acid regulation of gene expression. J. Biol. Chem. 267:5937-5941.
21 Hotamiskigil, G. S., R. S. Johnson, R. J. Distel, R. Ellis, V. E. Papaioannou and B. M. Spiegelman. 1996. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Sci. 274:1377-1379.   DOI   ScienceOn
22 Ribarik Coe, N., M. A. Simpson and D. A. Bernlohr. 1999. Targeted siruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J. Lipid Res. 40:967-972.
23 Vogel-Hertzel, A. and D. A. Bernlohr. 2000. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol. Metab. 11:175-180.   DOI   ScienceOn
24 Nechtelberger, D., V. Pires, J. Solkner, I. Stur, G. Brem, M. Mueller and S. Mueller. 2001. Intramuscular fat content and genetic variants at fatty acid binding protein loci in Austrian pigs. J. Anim. Sci. 79:2798-2804.
25 Richieri, G. V., R. T. Ogata and A. M. Kleinfeld. 1994. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 269:23918-23930.
26 Hovenier, R., E. Kanis, T. Van Asseldonk and N. G. Westerink. 1993. Breeding for pig meat quality in halothane negative populations-a review. Pig News Info. 14:17N-25N.
27 de Koning, D. J., L. L. Janss, A. P. Rattink, P. A.Van Oers, B. J. de Viries and M. A. Groenen. 1999. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (sus scrofa). Genet. 152:1679-1690.
28 Fisher, R. M., P. Eriksson, J. Hoffstedt, G. S. Hotamisligil, A. Thorne, M. Ryden, A. Hamsten and P. Arner. 2001. Fatty acid binding protein expression in different adipose tissue depots from lean and obese individuals. Diabetologia. 44:1268-1273.   DOI   ScienceOn
29 De Vol, D. L., F. K. McKeith, P. J. Novakofski, R. D. Shanks and T. R. Carr. 1988. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J. Anim. Sci. 66:385-395.   DOI
30 Kissebah, A. H. and G. R. Krakower. 1994. Regional adiposity and morbidity. Physiol. Rev. 74:761-811.   DOI
31 Ribarik Coe, N. and D. A. Bernlohr. 1998. Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim. Biophys. Acta. 1391:287-306.   DOI   ScienceOn
32 Okumura, T., K. Saito, T. Nade, S. Misumi, Y. Masuda, H. Sakuma, S. Nakayama, K. Fujita and T. Kawamura. 2007. Effects of intramuscular fat on the sensory characteristics of M. longissumus dorsi in Japanese Black Steers as judged by a trained analytical panel. Asian-Aust. J. Anim. Sci. 20:577-581.   과학기술학회마을   DOI