Browse > Article
http://dx.doi.org/10.5713/ajas.2007.775

Comparative Efficacy of Different Soy Protein Sources on Growth Performance, Nutrient Digestibility and Intestinal Morphology in Weaned Pigs  

Yang, Y.X. (College of Animal Life Sciences, Kangwon National University)
Kim, Y.G. (College of Animal Life Sciences, Kangwon National University)
Lohakare, J.D. (College of Animal Life Sciences, Kangwon National University)
Yun, J.H. (College of Animal Life Sciences, Kangwon National University)
Lee, J.K. (College of Animal Life Sciences, Kangwon National University)
Kwon, M.S. (College of Veterinary & Medicine, Kangwon National University)
Park, J.I. (College of Animal Life Sciences, Kangwon National University)
Choi, J.Y. (College of Animal Life Sciences, Kangwon National University)
Chae, B.J. (College of Animal Life Sciences, Kangwon National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.5, 2007 , pp. 775-783 More about this Journal
Abstract
To elucidate the efficacy of different soy protein sources on piglet's performance, a total of 280 weaned piglets ($Duroc{\times}Yorkshire{\times}Landrace$, $23{\pm}3$ d of age, $5.86{\pm}0.45$ kg initial BW) were allotted to 5 treatment diets comprising soybean meal (SBM), soy protein concentrate (SPC), Hamlet protein (HP300), fungal (Aspergillus oryzae) fermented soy protein (FSP-A), and fungal plus bacterial (A. oryzae+Bacillus subtilis) fermented soy protein (FSP-B), respectively. Experimental diets for feeding trial were formulated to contain each soy protein sources at 8% level to corn-whey powder basal diet. There were 14 pigs per pen and 4 pens per treatment. Experimental diets were fed from 0 to 14 d after weaning and then a common commercial diet was fed from 15 to 35 d. Also for ileal digestibility studies, 18 pigs were assigned to 6 dietary treatments as N-free, SBM, SPC, HP300, FSP-A and FSP-B with T-canulation at distal ileum for 6 days. At $14^{th}$ d of experimental feeding, the ADG was significantly higher (p<0.05) in SPC fed diet as compared with others. Similar trend was noticed during the 15-35 d and overall study (0-35 d). All the processed soy protein sources tested in this experiment improved (p<0.05) growth than SBM during overall study. The nutrient digestibility of GE, DM, CP and Ca showed lower (p<0.05) values in SBM and FSP-A fed groups than SPC and FSP-B treatments. The apparent ileal digestibility of TEAA, non-TEAA and TAA showed lower (p<0.05) in SBM treatments compared with other soy protein sources. The true ileal digestibility of TEAA, non-TEAA and TAA were lower (p<0.05) in SBM fed group than SPC and HP300 treatments, and lower than FSP treatments though they didn't achieve significant difference (p>0.05). Villous height and crypt depth was not affected by dietary treatments. In conclusion, the growth and digestibility of nutrients in weaned pigs fed SPC was superior to others. Also FSP-A and FSP-B showed improved performance than those fed SBM.
Keywords
Piglets; Growth; Nutrient Digestibility; Intestine; Fermented Soy Protein;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 12
연도 인용수 순위
1 Genebiotech. 2004. Pepsoygens, a fermented soybean product for pigs. Product brochure information. Genebiotech Co. Ltd. Seoul, Korea.
2 Kelly, D., J. A. Smyth and K. J. McCracken. 1991. Digestive development in the early weaned pig. I. Effect of continuous nutrient supply on the development of the digestive tract and on changes in the digestive enzyme activity during the first week post-weaning. Br. J. Nutr. 65:169-180.   DOI   ScienceOn
3 Kim, Y. G. 2005. Effects of feeding fermented soy protein on growth performance, nutrients digestibility, intestinal morphology and immune response in weaned pigs. Ph.D. Thesis, Kangwon National University, Korea.
4 Kim, Y. G., J. D. Lohakare, J. H. Yun, S. Heo and B. J. Chae. 2007. Effect of feeding levels of microbial fermented soy protein on the growth performance, nutrient digestibility and intestinal morphology in weaned piglets. Asian-Aust. J. Anim. Sci. 20:399-404.   과학기술학회마을   DOI
5 Kolar, C. V., S. H. Richert, C. D. Decker, F. H. Steinke and R. J. Vander Zanden. 1985. 3. Isolated soy protein. New Protein Foods. 5:261.
6 Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, R. D. Klemm, D. W. Giesting, J. D. Hancock, G. L. Allee and R. D. Goodband. 1991a. Measuring suitability of soybean products for earlyweaned pigs with immunological criteria. J. Anim. Sci. 69:3299-3307.   DOI
7 Min, B. J., J. W. Hong, O. S. Kwon, W. B. Lee, Y. C. Kim, I. H. Kim, W. T. Cho and J. H. Kim. 2004. The effect of feeding processed soy protein on the growth performance and apparent ileal digestibility in weanling pigs. Asian-Aust. J. Anim. Sci. 17:1271-1276.   과학기술학회마을   DOI
8 NRC. 1998. Nutrient requirements of swine (10th Ed). National Academy Press, Washington, DC.
9 Walker, W. R., G. L. Morgan and C. V. Maxwell. 1986a. Ileal cannulation in baby pigs with a simple T-cannula. J. Anim. Sci. 62:407-411.
10 Vente-Spreeuwenberg, M. A. M., J. M. A. J. Verdonk, J. F. J. G. Koninkx, A. C. Beynen and M. W. A. Verstegen. 2004. Dietary protein hydrolysates vs. the intact proteins do not enhance mucosal integrity and growth performance in weaned piglets. Livest. Prod. Sci. 85:151-164.   DOI   ScienceOn
11 Yun. J. H., I. K. Kwon, J. D. Lohakare, J. Y. Choi, J. S. Yong, J. Zheng, W. T. Cho and B. J. Chae. 2005. Comparative efficacy of plant and animal protein sources on the growth performance, nutrient digestibility, morphology and caecal microbiology of the early-weaned pigs. Asian-Aust. J. Anim. Sci. 18:1285-1293.   과학기술학회마을   DOI
12 Zhang, H. L., S. Y. Qiao, X. J. Chen, X. Wang, J. J. Xing and Y. L. Yin. 2005. Effects of graded levels of soya-bean protein on endogenous ileal lysine loss and amino acid digestibility in growing pigs. Anim. Sci. 81:257-264.
13 Sohn, K. S., C. V. Maxwell, D. S. Buchanan and I. L. Southern. 1994. Improved soybean protein sources for early-weaned pigs: I. Effects on performance and total track amino acid digestibility. J. Anim. Sci. 72:622-630.
14 AOAC. 1990. Official method of analysis (15th ed). Association of Official Analytical Chemists. Arlington, VA.
15 Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, J. D. Hancock, G. L. Allee, R. D. Goodband and R. D. Klemm. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 68:1790-1799.   DOI
16 Wilson, R. H. and J. Leibholz. 1981a. Digestion in the pig between 7 and 35 d of age. I. The performance of pigs given milk and soya-bean proteins. Br. J. Nutr. 45:301-319.   DOI   ScienceOn
17 Cromwell, G. L. 2001. Utilization of soy products in swine diets. In: Soy in animal nutrition (Ed. J. K. Drackley). Federation of Anim. Sci. Soc. Savoy, IL. pp. 258-287.
18 Cera, K. R., D. C. Mahan, R. F. Cross, G. A. Reinhart and R. E. Whitmoyer. 1988. Effect of age, weaning and post weaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci. 66:574-584.   DOI
19 Chae, B. J., In K. Han, J. H. Kim, C. J. Yang, J. D. Hancock, I. H. Kim and D. A. Anderson. 1999. Effects of dietary protein sources on ileal digestibility and growth performance for earlyweaned pigs. Livest. Prod. Sci. 58:45-54.   DOI   ScienceOn
20 Leibholz, J. 1981. Utilization of casein, fishmeal and soybean proteins in dry diets for pigs between 7 and 28 days of age. Anim. Product. 34:9-15.
21 Walker, W. R., C. V. Maxwell, F. N. Owens and D. S. Buchanan. 1986b. Milk versus soybean protein sources for pigs: I. Effects of performance and digestibility. J. Anim. Sci. 63:505-512.   DOI
22 Wilson, R. H. and J. Leibholz. 1981b. Digestion in the pig between 7 and 35 d of age. III. The digestion of nitrogen in pigs given milk and soya-bean proteins. Br. J. Nutr. 45:337-346.   DOI   ScienceOn
23 Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, R. D. Klemm and R. D. Goodband. 1991b. Inter-relationship between hypersensitivity to soybean proteins and growth performance in early-weaned pigs. J. Anim. Sci. 69:4062-4069.   DOI
24 Pluske, J. R., I. H. Williams and F. X. Aherne. 1996. Villous height and crypt depth in piglets in response to increases in the intake of cow's milk after weaning. Anim. Sci. 62:145-158.   DOI
25 SAS. 1985. SAS. User's Guide: Statistics, SAS Inst. Inc. Cary. NC., USA.
26 Hong, K. J., C. H. Lee and S. W. Kim. 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food. 4:430-435.   과학기술학회마을   DOI   ScienceOn
27 Lalles, J. P. 1993. Soy products as protein sources for preruminant and young pigs. In: Soy in Animal Nutrition (Ed. J. K. Drackley) Federation of Anim. Sci. Soc. Savoy, IL. pp. 106-125.
28 Maner, J. H., W. G. Pond and J. K., Loosli. 1961. Utilization of soybean protein by baby pigs and rats. J. Anim. Sci. 20:614-620.   DOI
29 Moore, S. 1963. On the determination of cystine as cysteric acid. J. Biol. Sci. 38:235-237.
30 Fenton, T. W. and M. Fenton. 1979. An improved method for chromic oxide determination in feed and feces. Can. J. Anim. Sci. 59:631-634.   DOI