Browse > Article
http://dx.doi.org/10.5713/ajas.2007.517

Comparison of In vitro Gas Production, Metabolizable Energy, Organic Matter Digestibility and Microbial Protein Production of Some Legume Hays  

Karabulut, Ali (Uludag University, Faculty of Agriculture, Animal Science Department)
Canbolat, Onder (Uludag University, Faculty of Agriculture, Animal Science Department)
Kalkan, Hatice (Uludag University, Faculty of Agriculture, Animal Science Department)
Gurbuzol, Fatmagul (Ministry of Agriculture and Rural Development, Agriculture Province Directorate)
Sucu, Ekin (Uludag University, Faculty of Agriculture, Animal Science Department)
Filya, Ismail (Uludag University, Faculty of Agriculture, Animal Science Department)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.4, 2007 , pp. 517-522 More about this Journal
Abstract
The aim of this study was to compare in vitro gas production kinetics, metabolizable energy (ME), organic matter digestibility (OMD) and microbial protein (MP) production of widely used legume hays in ruminant nutrition in Turkey. Gas production were determined at 0, 3, 6, 12, 24, 48, 72 and 96 h and their kinetics were described using the equation p = a+b ($1-e^{-ct}$). There were significant differences among legume hays in terms of chemical composition. The crude protein content of legume hays ranged from 11.7 to 18.6% of dry matter (DM); crude fat from 2.1 to 3.5% DM; neutral detergent fiber from 35.6 to 52.0% DM; acid detergent fiber from 32.0 to 35.5% DM and acid detergent lignin 1.7 to 11.0% DM. Total gas production after 96 h incubation ranged between 61.67 and 76.00 ml/0.200 g of substrate. At 24, 72 and 96 h incubation the total gas production for common vetch were significantly (p<0.01) higher than those of the other legume hays. The ME, OMD and MP of legume hays ranged from 9.09 to 11.12 MJ/kg DM, 61.30 to 75.54% and 90.35 to 138.05 g/kg DM, respectively. The ME, OMD and MP of common vetch was significantly (p<0.01) higher than those of the other hays due to low cell-wall contents and high crude protein. At the end of the experiment, differences in chemical composition of legume hays resulted in the differences in the in vitro gas production, gas production kinetics and the estimated parameters such as ME, OMD and MP. Common vetch can be recommended to hay producers and ruminant breeders, due to high ME, OMD and MP production.
Keywords
Legume Hay; Gas Production; Digestibility; Metabolizable Energy; Microbial Protein;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Getachew, G., E. J. DePeters and P. H. Robinson. 2004. In vitro gas production provides effective method for assessing ruminant feeds. California Agric. 58:54-58   DOI   ScienceOn
2 Gutteridge, R. C. and H. M. Shelton. 1994. Forage Tree Legumes in Tropical Agricuture. CABI Publishing. Wallingford, Oxon, UK
3 Makkar, H. P. S. 2005. In vitro gas methods for evaluation of feeds containing physiochemicals. Anim. Feed Sci. Technol. 123-124:291-302   DOI   ScienceOn
4 Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:9-55
5 Ozturk, D., M. Kizilsimsek, A. Kamalak, O. Canbolat and C. O. Ozkan. 2006. Effects of ensiling alfalfa with whole maize crop on the chemical composition and nutritive value of silage mixtures. Asian-Aust. J. Anim. Sci. 19(4):526-532   DOI
6 Pearse, E. S. and H. O. Hartley. 1966. Biometrika tables for statisticians. Cambridge University Press. UK. 1:1-270
7 Rymer, C. and D. I. Givens. 1999. The use of the in vitro gas production technique to investigate the effect of substrate on the partitioning between microbial biomass production and the yield of fermentation products. Proc. Br. Soc. Anim. Sci. p. 36
8 Leng, R. A. 1993. Quantitative ruminant nutrient a green science. Aust. J. Agric. Sci. 44:363-380   DOI   ScienceOn
9 Orskov, E. R. and P. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci. 92:499-503   DOI
10 Filya, I., A. Karabulut, O. Canbolat, T. Degirmencioglu and H. Kalkan. 2002 Investigations on determination of nutritive values and optimum evaluation conditions by animal organisms of the foodstuffs produced at Bursa province by in vivo and in vitro methods. The Series of Scientific Researhes and Investigations. Uludag University Agricultural Faculty. No. 25 (In Turkish)
11 Ranilla, M. J., S. Lopez, M. D. Carro, R. J. Wallace and C. J. Newbold. 2001. Effect of fibre source on the efficiency of microbial synthesis by mixed microorganisms from the sheep rumen in vitro. Proc. Br. Soc. Anim. Sci. p. 151
12 Stern, M. D. and W. H. Hoover. 1979. Methods for determining and factors affecting rumen microbial protein synthesis: A review. J. Anim. Sci. 49:1590-1603   DOI
13 AOAC. 1990. Official Method of Analysis. Association of Official Analytical Chemists. 15th ed. Washington DC. USA
14 Buxton, D. R. 1996. Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Technol. 59:37-49   DOI   ScienceOn
15 Duane, E. U. 1997. Hay quality evaluation. Nutrition Advisory Group Handbook. http://www.nagonline.net/Technical%20 Papers/NAGFS00197Hay-JONIFEB24,2002MODIFIED.pdf
16 Chang, M. B., J. W. Joo, G. S. Bae, W. K. Min, H. S. Choi, W. J. Maeng and Y. H. Chung. 2005. Effect of protein sources on rumen microbial protein synthesis using simulated continuous culture system. Asian-Aust. J. Anim. Sci. 18(3):326-331   DOI
17 Stastica, 1993. Stastica for windows release 4.3, StatSoft, Inc. Tulsa, OK, USA
18 Karsli, M. A. and J. R. Russell. 2001. Effects of some dietary factors on ruminal microbial protein synthesis. Tr. J. Vet. Anim. Sci. 25:681-686
19 Parissi, Z. M., T. G. Papachristou and A. S. Nastis. 2005. Effect of drying method on estimated nutritive value of browse species using an in vitro gas production technique. Anim. Feed Sci. Technol. 30:119-128
20 Blummel, M., H. P. S. Makkar and K. Becker. 1997a. In vitro gas production-a technique revisied. J. Anim. Physiol. Anim. Nutr. 77:24-34   DOI   ScienceOn
21 Cone, J. W. and A. H. Van Gelder. 1999. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 76:251-256   DOI   ScienceOn
22 Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. (Camb.) 92:217-222
23 Kamalak, A., O. Canbolat, A. Erol, C. Kilinc, M. Kizilsimsek, C.O. Ozkan and E. Ozkose. 2005a. Effect of variety on chemical composition, in vitro gas production, metabolizable energy and organic matter digestibility of alfalfa hays. Livest. Res. Rural Dev. 17:77
24 Van Soest, P. J., J. D. Robertson and B. A. Lewis. 1991. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animals nutrition. J. Dairy Sci. 74:3583-3597   DOI   ScienceOn
25 Sinclair, L. A., P. C. Garnsworthy, J. R. Newbold and P. J. Buttery. 1995. Effects of synchronizing the rate of dietary energy and nitrogen in diets with similar carbohydrate composition on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 124:463-472   DOI
26 Morrison, F. B. 1956. Feeds and Feeding. 22nd ed. Morrison Publishing Company. Clinton, IA, USA
27 Tolera, A., K. Khazaal and E. R. Orskov. 1997. Nutritive evaluation of some browse species. Anim. Feed Sci. Technol. 67:181-195   DOI   ScienceOn
28 Blummel, M., A. Karsli and J. R. Russell. 2003. Influence of diet on growth yields of rumen microorganisms in vitro and in vivo: influence on growth yield of variable carbon fluxes to fermentation products. Br. J. Nutr. 90:625-634   DOI
29 Srinivas, B. and U. Krishnamoorthy. 2005. Influence of diet induced changes in rumen microbial characteristics on gas production kinetics of straw substrates in vitro. Asian-Aust. J. Anim. Sci. 18(7):990-996   DOI
30 Kamalak, A., O. Canbolat, Y. Gurbuz, A. Erol and O. Ozay. 2005b. Effect of maturity stage on chemical composition, in vitro and in situ dry matter degradation of tumbleweed hay (Gundelia tournefortii L.). Small Rumin. Res. 58:149-156   DOI   ScienceOn
31 Ensminger, M. E., J. E. Oldfield and W. W. Heinemann. 1990. Feeds and Nutrition. The 2nd ed. The Ensminger Publishing Company. Clovis, CA, USA. pp. 1265-1511
32 Hoover, W. H. and S. R. Stokes. 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3630-3644   DOI   ScienceOn
33 Blummel, M., H. Steingass and K. Becker. 1997b. The relationship between in vitro gas production, in vitro microbial biomass yield and n-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. Br. J. Nutr. 77:911-921   DOI   ScienceOn