Browse > Article
http://dx.doi.org/10.5713/ajas.2007.1805

Evaluation of Reciprocal Cross Design on Detection and Characterization of Non-Mendelian QTL in $F_2$ Outbred Populations: I. Parent-of-origin Effect  

Lee, Yun-Mi (School of Biotechnology, Yeungnam University)
Lee, Ji-Hong (School of Biotechnology, Yeungnam University)
Kim, Jong-Joo (School of Biotechnology, Yeungnam University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.12, 2007 , pp. 1805-1811 More about this Journal
Abstract
A simulation study was conducted to evaluate the effect of reciprocal cross on the detection and characterization of parent-of-origin (POE) QTL in $F_2$ QTL populations. Data were simulated under two different mating designs. In the one-way cross design, six $F_0$ grand sires of one breed and 30 $F_0$ grand dams of another breed generated 10 $F_1$ offspring per dam. Sixteen $F_1$ sires and 64 $F_1$ dams were randomly chosen to produce a total of 640 $F_2$ offspring. In the reciprocal design, three $F_0$ grand sires of A breed and 15 $F_0$ grand dams of B breed were mated to generate 10 $F_1$ offspring per dam. Eight $F_1$ sires and 32 $F_1$ dams were randomly chosen to produce 10 $F_2$ offspring per $F_1$ dam, totaling 320 $F_2$ offspring. Another mating set comprised three $F_0$ grand sires of B breed and 15 $F_0$ grand dams of A breed to produce the same number of $F_1$ and $F_2$ offspring. A chromosome of 100 cM was simulated with large, medium or small QTL with fixed or different allele frequencies in parental breeds. A series of tests between Mendelian and POE models were applied to characterize QTL as Mendelian, paternal, maternal or partial expression QTL. The overall detection powers were similar between the two mating designs. However, the proportions of paternally expressed QTL that were declared as paternal QTL type were greater in the reciprocal cross design than in the one-way cross, and vice versa for Mendelian QTL. When QTL alleles were segregating in parental breeds, a significant proportion of Mendelian QTL were spuriously declared POE QTL, suggesting that care must be taken to characterize imprinting QTL in a QTL mapping population with a small number of $F_1$ parents.
Keywords
Quantitative Trait Loci Swine; Detection Power; Imprinting; Simulation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Nezer, C., L. Moreau, B. Brouwers, W. Coppieters, J. Detileux, R. Hanset, L. Karim, A. Kvasz, P. LeRoy and M. Georges. 1999. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nature Genetics 21:155-156.   DOI   ScienceOn
2 Rohrer, G. A., R. M. Thallman, S. Shackelford, T. Wheeler and M. Koohmaraie. 2006. A genome scan for loci affecting pork quality in a Duroc-Landrace F2 population. Anim. Genet. 37:17-27.   DOI   ScienceOn
3 Kim, T. H., B. H. Choi, H. K. Lee, H. S. Park, H. Y. Lee, D. H. Yoon, J. W. Lee, G. J. Jeon, I. C. Cheong, S. J. Oh and J. Y. Han. 2005c. Identification of quantitative traits loci (QTL) affecting growth traits in pigs. Asian-Aust. J. Anim. Sci. 18:1524-1528.   과학기술학회마을   DOI
4 Shulin, Y., Z. Zhu and K. Li. 2005. Potential of the quantitative trait loci mapping using crossbred population. Asian-Aust. J. Anim. Sci. 18:1675-1683.   과학기술학회마을   DOI
5 Nezer, C., C. Collette, L. Moreau, B. Brouwers, J.-J. Kim, E. Giuffra, N. Buys, L. Andersson and M. Georges. 2003. Haplotype sharing refines the locataion of an imprinted quantitative trait loci with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene. Genetics 165:277-285.
6 Kim, E. H., B. H. Choi, K. S. Kim, C. K. Lee, B. W. Cho, T.-H. Kim and J.-J. Kim. 2007. Detection of Mendelian and parentof- origin quantitative trait loci in a cross between Korean Native Pig and Landrace I. growth and body composition traits. Asian-Aust. J. Anim. Sci. 20:669-676.   과학기술학회마을   DOI
7 Wilkins, J. F. and D. Haig. 2003. What good is genomic imprinting: the function of parent-specific gene expression. Nature Review Genetics 4:1-10   ScienceOn
8 De Koning, D. J., A. P. Rattink, B. Harlizius, J. A. M. van Arendonk, E. W. Brascamp and M. A. M. Groenen. 2000. Genome-wide scan for body composition in pigs revealed important role of imprinting. PNAS. 97:7947-7950.   DOI   ScienceOn
9 Haley, C. S., S. A. Knott and J.-M. Elsen. 1994. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195-1207.
10 De Koning, D. J., A. P. Rattink, B. Harlizius, J. A. M. van Arendonk, E. W. Brascamp and M. A. M. Groenen. 2001. Detection and characterization of quantitative trait loci for meat quality traits in pigs. J. Anim. Sci. 79:2812-2819.   DOI
11 De Koning, D. J., H. Bovenhuis and J. A. M. van Arendonk. 2002. On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161:931-938.
12 Lee, Y.-M., E.-H. Kim and J.-J. Kim. 2007. Evaluation of reciprocal cross design on detection and characterization of Mendelian QTL in F2 outbred populations. Asian-Aust. J. Anim. Sci. 20:1625-1630.   DOI
13 Kim, J.-J., H. Zhao, H. Thomsen, M. F. Rothschild and J. C. M. Dekkers. 2005b. Combined line-cross and half-sib QTL analysis of crosses between outbred lines. Genet. Res. 85:235-248.   DOI   ScienceOn
14 Kim, J.-J., M. F. Rothschild, J. Beever, S. Rodriguez-Zas and J. C. M. Dekkers. 2005a. Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci. J. Anim. Sci. 83:1229-1240.   DOI
15 Jeon, J. T., O. Carlborg, A. Tornsten, E. Giuffra, V. Amarger, P. Chardon, L. Anderson-Elklund, K. Andersson, I. Hansson, K. Lundstroem and L. Andersson. 1999. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics 21:157-158.   DOI   ScienceOn
16 McElroy, J., J.-J. Kim, D. Harry, S. Brown, J. C. M. Dekkers and S. Lamont. 2006. Trait loci affecting white meat percent and other growth and carcass traits in commercial broiler chickens. Poult. Sci. 85:593-605.   DOI
17 Van Laere, A. S., M. Nguyen, M. Braunschweig, C. Nezer, C. Collette, L. Moreau, A. L. Archibald, C. S. Haley, N. Buys, M. Tally, G. Andersson, M. Georges and L. Andersson. 2003. A regulatory mutation in IGF2 causes a major QTL effects on muscle growth in the pig. Nature 425:832-836.   DOI   ScienceOn
18 Thallman, R. M., J. O. Sanders and J. F. Taylor. 1992. Non- Mendelian genetic effects in reciprocal cross Brahman$\times$ Simmental F$_{1}$ calves produced by embryo transfer. Beef Cattle Research in Texas, PR-5053:8-14. Tex. Agri. Exp. Sta., College Station
19 Thomsen, H., H. K. Lee, M. F. Rothschild, M. Malek and J. C. M. Dekkers. 2004. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J. Anim. Sci. 82:2213-2228.   DOI
20 Tycko, B. and I. M. Morison. 2002. Physiological functions of imprinted genes. J. Cellular Physiol. 192:245-258.   DOI   ScienceOn
21 Choi, B. H., J. S. Lee, G. W. Jang, H. Y. Lee, J. W. Lee, K. T. Lee, H. Y. Chung, H. S. Park, S. J. Oh, S. S. Sun, K. H. Myung, I. C. Cheong and T. H. Kim. 2006. Mapping of the porcine Calpastatin gene and association study of its variance with economic traits in pigs. Asian-Aust. J. Anim. Sci. 19:1085-1089.   과학기술학회마을   DOI
22 Alfonso, L. and C. S. Haley. 1998. Power of different F$_{2}$ schemes for QTL detection in livestock. Anim. Sci. 66:1-8.   DOI   ScienceOn