Browse > Article
http://dx.doi.org/10.5713/ajas.2007.1798

Association between Polymorphisms of MSTN and MYF5 Genes and Growth Traits in Three Chinese Cattle Breeds  

Zhang, R.F. (College of Animal Science and Technology, Northwest A&F University Shaanxi Key Laboratory of Molecular Biology for Agriculture)
Chen, H. (College of Animal Science and Technology, Northwest A&F University Shaanxi Key Laboratory of Molecular Biology for Agriculture)
Lei, C.Z. (College of Animal Science and Technology, Northwest A&F University Shaanxi Key Laboratory of Molecular Biology for Agriculture)
Zhang, C.L. (College of Animal Science and Technology, Northwest A&F University Shaanxi Key Laboratory of Molecular Biology for Agriculture)
Lan, X.Y. (College of Animal Science and Technology, Northwest A&F University Shaanxi Key Laboratory of Molecular Biology for Agriculture)
Zhang, Y.D. (College of Animal Science and Technology, Northwest A&F University Shaanxi Key Laboratory of Molecular Biology for Agriculture)
Zhang, H.J. (Institute of Cellular and Molecular Biology, Xuzhou Normal University)
Bao, B. (Institute of Cellular and Molecular Biology, Xuzhou Normal University)
Niu, H. (Research Center of Beef Cattle Engineering and Technology of Henan Province)
Wang, X.Z. (Research Center of Beef Cattle Engineering and Technology ofHenan Province)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.12, 2007 , pp. 1798-1804 More about this Journal
Abstract
The objective of this study was to assess the association of polymorphisms in MSTN and MYF5 genes with growth traits in three Chinese cattle breeds. Only one homozygous animal with BB genotype at MSTN locus was observed in Jiaxian population which was at Hardy-Weinberg disequilibrium (p<0.05). The frequencies of allele A at MSTN locus and allele B at MYF5 locus in the three Chinese breeds were 0.9550/0.9730/0.9720 and 0.8275/0.7581/0.7523, respectively. Allele A at MSTN locus and allele B at MYF5 locus were dominant in these three populations. No statistically significant differences in growth traits were observed between the genotypes of the Jiaxian breed at MSTN and MYF5 loci and the Nanyang breed at MYF5 locus. However, there were statistically significant differences between the genotypes at MSTN locus of the Nanyang breed for WH, HG, HGI and HGBLR (p<0.05), and of the Qinchuan breed for BLI (p<0.05). The SNP in MYF5 had significant effects on WH and HHC of Qinchuan animals (p<0.05). These results suggest that MSTN and MYF5 are strong candidate genes that influence growth traits in cattle. Other SNPs of MSTN and MYF5 or other linked genes should also be studied, which could lead to the development of selection plans to improve the performance of Chinese cattle and also promote the breeding of genuine beef cattle in China.
Keywords
Cattle; MSTN; MYF5; Growth Traits;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch, J. Kneeland, C. Hansen and S. S. Moore. 2002. Identical by descent haplotype sharing analysis: Application in fine mapping of QTLs for birth weight in commerical lines of Bos taurus. Proc. 7th World Congr. Genet. Appl. Livest. Prod. Montpellier, France. 481-484.
2 Rebbapragada, A., H. Benchabane, J. L. Wrana, A. J. Celeste and L. Attisano. 2003. Myostatin signals through a transforming growth factor $\beta$-like signaling pathway to block adipogenesis. Mol. Cell Biol. 23:7230-7242.   DOI   ScienceOn
3 Rudnicki, M. A., P. N. J. Schnegelsberg, R. H. Stead, T. Braun, H. H. Arnold and R. Jaenisch. 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 75:1351-1359.   DOI   ScienceOn
4 Sambrook, J. and D. W. Russell. Translated by Huang Pei Tang. 2002. Molecular Cloning A Laboratory Manual. 3nd. Science Press, Beijing, China.
5 Strail, A. and M. Kopecny. 1999. Genomic organization, sequence and polymorphism of the porcine myostatin (GDF-8; MSTN) gene. Anim. Genet. 30:462-470.
6 Stratil, A. and S. Cepica. 1999. Three polymorphisms in the porcine myogenic factor 5 (MYF5) gene detected by PCRRFLP. Anim. Genet. 30:79-80.   DOI   ScienceOn
7 LeHir, H., A. Nott and M. Moore. 2003. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 28:215-220.   DOI   ScienceOn
8 Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch and S. S. Moore. 2002. The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits. J Anim Sci. 80:1187-1194.   DOI
9 Lee, S. J. and A. C. McPherron. 2001. Regulation of myostatin activity and muscle growth. PNAS USA. 98:9306-9311.   DOI   ScienceOn
10 Klosowska, D, J. Kuryl, G. Elminowska-Wenda, W. Kapelanski, K. Walasik, M. Pierzchala, D. Cieslak and J. Bogucka. 2004. A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrian$\times$ (Polish Large White$\times$Polish Landrace) crosses. Czech. J. Anim. Sci. 49:99-107.
11 Langley, B., M. Thomas, A. Bishop, M. Sharma, S. Gilmour and R. Kambadur. 2002. Myostatin inhibits myoblast differentiation by downregulating MyoD expression. J. Biol. Chem. 277:49831-49840.   DOI   ScienceOn
12 Lu, W. F., J. Zhao, G. J. Wei, X. S. Shan. 2007. Cloning and prokaryotic expression of the mature fragment of the Chinese Yellow Bovine Myostatin gene. Asian-Aust. J. Anim. Sci. 20: 827-831.   과학기술학회마을   DOI
13 McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. PNAS USA. 94:12457-12461.   DOI   ScienceOn
14 Min, L. J. 2005. Studies on candidate gene of meat performance and QTL mapping of growth and development traits in goat (Dissertation). Northwest A&F University.
15 Zammit, P. S., J. J. Carvajal, J. P. Golding, J. E. Morgan, D. Summerbell, J. Zolnerciks, T. A. Partridge, P. W. Rigby and J. R. Beauchamp. 2004. Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. Dev. Biol. 15:454-465.
16 Greenwood, T. A. and J. R. Kelsoe. 2003. Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genom. 82:511-520.   DOI   ScienceOn
17 Grobet, L., L. J. Martin, D. Poncelet, D. Pirottin, B. Brouwers, J. Riquet, A. Schoeberlein, S. Dunner, F. Menissier, J. Masabanda, R. Fries, R. Hanset and M. Georges. 1997. A deletion in the bovine myostatin gene causes the doublemuscled phenotype in cattle. Nature Genetics 17:71-74.   DOI   ScienceOn
18 Grosse, W. M., S. M. Kappes, W. W. Laegreid, J. W. Keele, C. G. Chitko-McKown and M. P. Heaton. 1999. Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes. Mamm. Genome. 10:1062-1069.   DOI   ScienceOn
19 Fausto, M. da S. C., E. F. G. Simone, S. L. Paulo, V. P. Aldrin, F. M. G. Marta, V. G. B. da S. Marcos, S. S. Alex, de M. S. Kleibe and A. de M. G. Lúcio. 2005. Association of MYF5 gene allelic variants with production traits in pigs. Genet. Molec. Biol. 28:363-369.   DOI
20 Jiang, Y. L., N. Li, L. X. Du and C. X. Wu. 2002. Relationship of T->A mutation in the promoter region of myostatin gene with growth traits in swine. Acta Gentica Sinica. 29:413-416.
21 Joulia, D., H. Bernardi, V. Garandel, F. Rabenoelina, B. Vernus and G. Cabello. 2003. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Experim. Cell Res. 286:263-275.   DOI   ScienceOn
22 Kambadur, R., M. Sharma, T. P. Smith and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916.   DOI
23 Drogemuller, C. and A. Kempers. 2000. A TaqI PCR-RFLP at the bovine myogenic factor (MYF5) gene. Anim. Genet. 31:146-147.   DOI   ScienceOn
24 Taylor, W. E., S. Bhasin, J. Artaza, F. Byhower, M. Azam, D. H. Jr. Willard, F. C. Jr. Cull and N. Gonzalez-Cadavid. 2001. Myostatin inhibits cell proliferation and protein synthesis in C2C12muscle cells. Am. J. Physiol. Endocrinol. Metab. 280:E221-E228.   DOI
25 Casas, E., J. W. Keele, S. C. Fahrenkrug, T. P. L. Smith, L. V. Cundiff and R. T. Stone. 1999. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci. 77:1686-1692.   DOI
26 Chen, Y. C. 1999. Morden beef production. China Agriculture Press.
27 Chung, E. R. and W. T. Kim. 2005. Association of SNP marker in IGF-I and MYF5 candidate genes with growth traits in Korean cattle. Asian-Aust. J. Anim. Sci. 18:1061-1065.   과학기술학회마을   DOI
28 Te Pas, M. F. W., F. L. Harders, A. Soumillion, L. Born, W. Buist and T. H. E. Meuwissen. 1999. Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits. Mamm. Genome. 10:123-127.   DOI   ScienceOn
29 Thomas, M., B. Langley, C. Berry, M. Sharma, S. Kirk, J. Bass and R. Kambadur. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275:40235-40245.   DOI   ScienceOn
30 Urbanski, P. and J. Kuryl. 2004. New SNPs in the coding and 5' flanking regions of porcine MYOD1 (MYF3) and MYF5 genes. J. Appl. Genet. 45:325-329.
31 Wagner, K. R., X. Liu, X. Chang and R. E. Allen. 2005. Muscle regeneration in the prolonged absence of myostatin. PNAS. USA. 102:2519-2524.   DOI   ScienceOn
32 Braun, T., E. Bober, B. Winter, N. Rosenthal and H. H. Arnold. 1990. Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12. EMBO J. 9:821-831.
33 Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich and H. H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8:701-709.
34 Casas, E., G. L. Bennett, T. P. L. Smith and L. V. Cundiff. 2004. Association of myostatin on early calf mortality, growth, and carcass composition traits in crossbred cattle. J. Anim. Sci. 82: 2913-2918.   DOI
35 Beauchamp, J. R., L. Heslop, D. S. W. Yu, S. Tajbakhsh, R. G. Kelly, A. Wernig, M. E. Buckingham, T. A. Partridge and P. S. Zammit. 2000. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 11:1221-1234.
36 Cieslak, D., J. Kuryl, W. Kapelansk, M. Pierzchala, S. Grajewska and M. Bocian. 2002. A relationship between genotypes at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs. Anim. Sci. 20:77-92.
37 Crisa, A., C. Marchitelli, M. C. Savarese and A. Valentini. 2003. Sequence analysis of myostatin promotor in cattle. Cytogenet. Genome Res. 102:48-52.   DOI   ScienceOn
38 Lin, J., B. Arnold, M. A. Della-Fera, M. J. Azain, D. L. Hartzell and C. A. Baile. 2002. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 290:701-706.   DOI   ScienceOn
39 Shibata, M., K. Ohshima, T. Kojima, T. Muramoto, K. Matsumoto, M. Komatsu, K. Aikawa, S. Fujimura and M. Kadowaki. 2003. Nucleotide sequence of myostatin gene and its developmental expression in skeletal muscles of Japanese Black beef. J. Amin. Sci. 74:383-390.
40 Rios, R., I. Karneiro, V. M. Arce and J. Devesa. 2002. Myostatin is an inhibitor of myogenic differentiation. Am. J. Physiol. Cell Physiol. 282:C993-C99.   DOI
41 Li, C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch, C. Hansen and S. S. Moore. 2004. Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J. Anim. Sci. 82:1-7.   DOI