Browse > Article
http://dx.doi.org/10.5713/ajas.2007.1517

Comparison of the [$^2H_5$]Phenylalanine Model with the [1-$^{13}C$]Leucine Method to Determine Whole Body Protein Synthesis and Degradation in Sheep Fed at Two Levels  

Al-Mamun, M. (Department of Animal Science, Faculty of Agriculture, Iwate University)
Ito, C. (Department of Animal Science, Faculty of Agriculture, Iwate University)
Fujita, T. (Department of Animal Science, Faculty of Agriculture, Iwate University)
Sano, H. (Department of Animal Science, Faculty of Agriculture, Iwate University)
Sato, A. (Department of Animal Science, Faculty of Agriculture, Iwate University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.10, 2007 , pp. 1517-1524 More about this Journal
Abstract
The [$^2H_5$]phenylalanine model was compared with the [1-$^{13}C$]leucine method to determine whole body protein synthesis (WBPS) and degradation (WBPD) in sheep fed at two levels. The animals were fed either 103 (M-diet) or 151 (H-diet) kcal $ME/kg^{0.75}/day$ once daily in a crossover design for 21 days each. The isotope dilutions were simultaneously conducted as a primed-continuous infusion of [$^2H_5$]phenylalanine, [$^2H_2$]tyrosine and [1-$^{13}C$]leucine on each dietary treatment. The WBPS and WBPD calculated from the [$^2H_5$]phenylalanine model were lower (p = 0.009 and p = 0.003, respectively) than those calculated from the [1-$^{13}C$]leucine method. The WBPS tended to be higher (p = 0.08) and WBPD was numerically higher (p = 0.33) for H-diet than M-diet in the [$^2H_5$]phenylalanine model, whereas the WBPS was numerically higher (p = 0.37) for H-diet and WBPS remained similar (p = 0.79) between diets in the [1-$^{13}C$]leucine method. However, the absolute values and the directions of WBPS as well as WBPD from M-diet to H-diet were comparable between the [$^2H_5$]phenylalanine model and [1-$^{13}C$]leucine method. Moreover, the values vary depending on the use of the respective amino acid contents in the carcass protein when calculating WBPS and WBPD. Therefore, it is concluded that the [$^2H_5$]phenylalanine model could be used as an alternative to the [1-$^{13}C$]leucine method for the determination of WBPS and WBPD in sheep.
Keywords
Isotope Dilution Method; Stable Isotope; Dietary Intake; Protein Synthesis; Protein Degradation; Sheep;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Zello, G. A., L. Marai, A. S. F. Tung, R. O. Ball and P. B. Pencharz. 1994. Plasma and urine enrichments following infusion of L- [1-$^{13}C$]phenylalanine and L-[ring-$^2H_5$]phenylalanine in humans: evidence for an isotope effects in renal tubular reabsorption. Metabol. 43:487-491.   DOI   ScienceOn
2 Lapierre, H., J. P. Blouin, J. F. Bernier, C. K. Reynolds, P. Dubreuil and G. E. Lobley. 2002. Effect of supply of metabolizable protein on whole body and splanchnic leucine metabolism in lactating cows. J. Dairy Sci. 85:2631-2641.   DOI   ScienceOn
3 Lobley, G. E., X. Shen, G. Le, D. M. Bremner, E. Milne, A. G. Calder, S. E. Anderson and N. Dennison. 2003. Oxidation of essential amino acids by the ovine gastrointestinal tract. Br. J. Nutr. 89:617-629.   DOI   ScienceOn
4 Wolfe, R. R. 1984. Tracers in metabolic research. Radioisotope and stable isotope/mass spectrometry methods. Alan R. Liss, Inc., New York.
5 Young, B. A., B. Kerrigan and R. J. Christopherson. 1975. A versatile respiratory pattern analyzer for studies of energy metabolism of livestock. Can. J. Anim. Sci. 55:17-22.   DOI
6 Borel, M. J., P. E. Williams, K. Jabbour, J. C. Hibbard and P. J. Flakoll. 1997. Maintaining muscle protein anabolism after a metabolic stress: role of dextrose vs. amino acid availability. Am. J. Physiol. Endocrinol. Metab. 272:E36-E44.
7 Krishnamurti, C. R. and S. M. Janssens. 1988. Determination of leucine metabolism and protein turnover in sheep, using gasliquid chromatography-mass spectrometry. Br. J. Nutr. 59:155-164.   DOI   ScienceOn
8 Brouwer, E. 1965. Report on sub-committee on constants and factors. In: Energy Metabolism. (Ed. K. L. Blaxter). Academic Press, London. pp. 302-304.
9 Pen, B., T. Iwama, M. Ooi, T. Saitoh, K. Kida, T. Iketaki, J. Takahashi and H. Hidari. 2006. Effect of potato by-products based silage on rumen fermentation, methane production and nitrogen utilization in holstein steers. Asian-Aust. J. Anim. Sci. 19:1283-1290.   과학기술학회마을   DOI
10 Whittaker, P. G., C. H. Lee, B. G. Cooper and R. Taylor. 1999. Evaluation of phenylalanine and tyrosine metabolism in late human pregnancy. Metabol. 48:849-852.   DOI   ScienceOn
11 Reeds, P. J., M. F. Fuller, A. Cadenhead and G. E. Lobley. 1981. Effects of changes in the intakes of protein and non-protein energy on whole-body protein turnover in growing pigs. Br. J. Nutr. 45:539-546.   DOI   ScienceOn
12 Rocchiccioli, F., J. P. Leroux and P. Cartier. 1981. Quantitation of 2-ketoacids in biological fluids by gas chromatography chemical ionization mass spectrometry of o-trimethylsilylquinoxalinol derivatives. Biomed. Mass Spectrom. 8:160-164.   DOI
13 Sano, H., M. Kajita and T. Fujita. 2004. Effect of dietary protein intake on plasma leucine flux, protein synthesis, and degradation in sheep. Comp. Biochem. Physiol. B 139:163-168.   DOI   ScienceOn
14 SAS. 1996. $SAS/STAT^{\circledR}$ Software: Changes and Enhancements through Release 6.11. SAS Inst. Inc. Cary, NC.
15 Thompson, G. N., P. J. Pacy, H. Merritt, G. C. Ford, M. A. Read, K. N. Cheng and D. Halliday. 1989. Rapid measurement of whole body and forearm protein turnover using a [$^2H_5$]phenylalanine model. Am. J. Physiol. 256:E631-E639.
16 Weatherburn, M. W. 1967. Phenol-hypochloride reaction for determination of ammonia. Anal. Chem. 39:971-974.   DOI
17 Gibson, N. R., F. Jahoor, L. Ware and A. A. Jackson. 2002. Endogenous glycine and tyrosine production is maintained in adults consuming a marginal-protein diet. Am. J. Clin. Nutr. 75:511-518.   DOI
18 Clarke, J. T. R. and D. M. Bier. 1982. The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[ring-$^2H_5$]phenylalanine and L-[1-$^{13}C$]tyrosine in the post absorptive state. Metabol. 31:999-1005.   DOI   ScienceOn
19 Clark, S. E., C. A. Karn, J. A. Ahlrichs, J. Wang, C. A. Leitch, E. A. Leitchty and S. C. Denne. 1997. Acute changes in leucine and phenylalanine kinetics produced by parenteral nutrition in premature infants. Pediatr. Res. 41:568-574.   DOI   ScienceOn
20 Fujita, T., M. Kajita and H. Sano. 2006. Responses of whole body protein synthesis, nitrogen retention and glucose kinetics to supplemental starch in goats. Comp. Biochem. Physiol. B. 144:180-187.   DOI   ScienceOn
21 Kita, K., T. Muramatsu, I. Tasaki and J. Okumura. 1989. Influence of dietary non-protein energy intake on whole-body protein turnover in chicks. Br. J. Nutr. 61:235-244.   DOI   ScienceOn
22 Connell, A., A. G. Calder, S. E. Anderson and G. E. Lobley. 1997. Hepatic protein synthesis in sheep: effect of intake as monitored by use of stable-isotope-labelled glycine, leucine and phenylalanine. Br. J. Nutr. 77:255-271.   DOI   ScienceOn
23 Marchini, J. S., L. Castillo, T. E. Chapman, J. A. Vogt, A. Ajami and V. R. Young. 1993. Phenylalanine conversion to tyrosine: comparative determination with L-[Ring-$^2H_5$]phenylalanine and L-[1-$^{13}C$]phenylalanine as tracers in man. Metabol. 42:1316-1322.   DOI   ScienceOn
24 Millward, D. J., G. M. Price, P. J. H. Pacy and D. Halliday. 1991. Whole-body protein and amino acid turnover in man: what can we measure with confidence? Proc. Nutr. Soc. 50:197-216.   DOI   ScienceOn
25 Matthews, D. E., H. P. Schwarz, R. D. Yang, K. J. Motil, V. R. Young and D. M. Bier. 1982. Relationship of plasma leucine and alpha-ketoisocaproate during a L-[1-$^{13}C$]leucine infusion in man: a method for measuring human intracellular leucine tracer enrichment. Metabol. 31:1105-1112.   DOI   ScienceOn
26 Fujita, T., M. Kajita and H. Sano. 2007. Effects of non-protein energy intake on whole body protein synthesis, nitrogen retention and glucose turnover in goats. Asian-Aust. J. Anim. Sci. 20:536-542.   과학기술학회마을   DOI
27 Calder, A. G. and A. Smith. 1988. Stable isotope ratio analysis of leucine and ketoisocaproic acid in blood plasma by gas chromatography/mass spectrometry. Use of tertiary butyldimethylsilyl derivatives. Rapid Commun. Mass Spectrom. 2:14-16.   DOI   ScienceOn
28 Harris, P. M., P. A. Skene, V. Buchan, E. Milne, A. G. Calder, S. E. Anderson, A. Connell and G. E. Lobley. 1992. Effect of food intake on hind-limb and whole-body protein metabolism in young growing sheep: chronic studies based on arterio-venous techniques. Br. J. Nutr. 68:389-407.   DOI   ScienceOn
29 Pacy, P. J., G. M. Price, D. Halliday, M. R. Quevedo and D. J. Millward. 1994. Nitrogen homeostasis in man: the diurnal responses of protein synthesis and degradation and amino acid oxidation to diets with increasing protein intakes. Clin. Sci. 86:103-118.   DOI
30 Savary-Auzeloux, I., S. O. Hoskin and G. E. Lobley. 2003. Effect of intake on whole body plasma amino acid kinetics in sheep. Reprod. Nutr. Dev. 43:117-129.   DOI   ScienceOn
31 Schroeder, G. F., E. C. Titgemeyer, M. S. Awawdeh, J. S. Smith and D. P. Gnad. 2006. Effects of energy level on methionine utilization by growing steers. J. Anim. Sci. 84:1497-1504.
32 Bregendahl, K., L. Liu, J. P. Cant, H. S. Bayley, B. W. McBride, L. P. Milligan, J. T. Yen and M. Z. Fan. 2004. Fractional protein synthesis rates measured by an intraperitoneal injection of a flooding dose of L-[ring-2H5]phenylalanine in pigs. J. Nutr. 134:2722-2728.
33 National Research Council. 1985. Nutrient Requirements of Sheep. 6th rev. ed. National Academy Press, Washington, DC.