Browse > Article
http://dx.doi.org/10.5713/ajas.2006.1085

Mapping of the Porcine Calpastatin Gene and Association Study of Its Variance with Economic Traits in Pigs  

Choi, B.H. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Lee, J.S. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Jang, G.W. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Lee, H.Y. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Lee, J.W. (Department of Animal Science, Institute of Biotechnology, Chonnam National University)
Lee, K.T. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Chung, H.Y. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Park, H.S. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Oh, S.J. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Sun, S.S. (Department of Animal Science, Institute of Biotechnology, Chonnam National University)
Myung, K.H. (Department of Animal Science, Institute of Biotechnology, Chonnam National University)
Cheong, I.C. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Kim, T.H. (Animal Genomics & Bioinformatics Division, National Livestock Research Institute, RDA)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.19, no.8, 2006 , pp. 1085-1089 More about this Journal
Abstract
The objectives of this study were to confirm a location of the calpastatin (CAST) gene in chromosome 2 and to detect associations of genetic variations with economic traits in the porcine CAST gene as a candidate gene for growth and meat quality traits in pigs. Calpastatin is a specific endogenous inhibitor of calpains. The calpain protease system is ubiquitous, and is involved in numerous growth and metabolic processes. Three single nucleotide variations were identified within a 1.6 kb fragment of the porcine CAST gene and these polymorphisms were used for genetic linkage mapping. Linkage and QTL mapping were performed with the National Livestock Research Institute (NLRI) reference families using eight microsatellites and SNP makers in the CAST gene. The porcine CAST gene was mapped adjacent to the markers, SW395 and SW1695 on SSC2 with LOD scores of 15.32 and 8.50, respectively. According to the QTL mapping, a significant association was detected at 82 cM between SW395 and CAST-Hinf I for weight at the age of 30 weeks. In addition, an association study was performed with the $F_2$ animals of NLRI reference families for Hinf I, Msp I and Rsa I polymorphisms in the CAST gene. Two polymorphisms, CAST-Rsa I and CAST-Hinf I, showed significant correlation for growth traits at p<0.01 and p<0.05, respectively.
Keywords
Calpastatin (CAST); Linkage Mapping; QTL Mapping; Korean Native Pig;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Andersson, L., C. S. Haley, H. Ellegren, S. A. Knott, M. Johansson, K. Andersson, L. Andersson-Eklund, I. Edfors-Lilja, M. Fredholm, I. Hansson, J. Hakansson and K. Lundstrom. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Sci. 263:1771-1774   DOI
2 Barnoy, S., T. Glaser and N. S. Kosower. 1996. The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion. Biochem. Biophysic. Res. Comun. 220:933-938   DOI   ScienceOn
3 Choi, B. H., B. J. Ahn, K. Kook, S. S. Sun, K. H. Myung, S. J. Moon and J. H. Kim. 2002. Effect of feeding patterns and sexes on growth rate, carcass trait and grade in Korean Native Cattle. Asian-Aust. J. Anim. Sci. 15:838-843   DOI
4 Ernst, C. W., A. Robic, M. Yerle, L. Wang and M. F. Rothschild. 1998. Mapping of calpastatin and three microsatellites to porcine chromosome 2q2.1-q2.4. Anim. Genet. 29:212-215   DOI
5 Goll, D. E., V. F. Thompson, H. Li, W. Wei and J. Cong. 2003. The Calpain System. Physiological review. 83:731-801   DOI
6 Moeller, S. J., T. J. Baas, T. D. Leeds, R. S. Emnett and K. M. Irvin. 2003. Rendement Napole gene effects and a comparison of glycolytic potential and DNA genotyping for classification of Rendement Napole status in Hampshire-sired pigs. J. Anim. Sci. 81:402-410
7 Kretchmar, D. H., M. Koohmaraie and H. J. Mersmann. 1994. Comparison of proteolytic variables in a lean and obese strain of pig at the ages of 2.5 and 7 months. Lab. Anim. Sci. 44:38-41
8 Rohrer, G. A., L. J. Alexander, Z. Hu, T. P. L. Smith, J. W. Keele and C. W. Beattie. 1996. A comprehensive map of the porcine genome. Genome Res. 6:371-391   DOI   ScienceOn
9 Koohmaraie, M., G.. Whipple, D. H. Kretchmar, J. D. Crouse and H. J. Mersmann. 1991. Postmortem proteolysis in longissimus muscle from beef, lamb and pork carcasses. J. Anim. Sci. 69:617-624   DOI
10 Choy, Y. H., G. J. Jeon, T. H. Kim, B. H. Choi, I. C. Cheong, H. K. Lee, K. S. Seo, S. D. Kim, Y. I. Park and H. W. Chung. 2002. Genetic analyses of carcass characteristics in crossbred pigs: Cross between Landrace and Korean wild boars. Asian-Aust. J. Anim. Sci. 15:1080-1084   DOI
11 Kristensen, L., M. Therkildsen, B. Riis, M. T. Sorensen, N. Oksbjerg, P. P. Purslow and P. Ertbjerg. 2002. Dietary-induced change of muscle growth rate in pigs: Effects on in vivo and postmortem muscle proteolysis and meat quality. J. Anim. Sci. 80:2862-2871
12 Knott, S. A., L. Marklund, C. S. Haley, K. Andersson, W. Davies, H. Ellegren, M. Fredholm, I. Hansson, B. Hoyheim, K. Lundstrom, M. Moller and L. Andersson. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genet. 149:1069-1080
13 Zhang, W., C. Haley and C. Moran. 1995. Alignment of the PiGMaP and USDA linkage maps for porcine chromosomes 2 and 5. Anim. Genet. 26:361-364   DOI   ScienceOn
14 Lee, H. K., S. S. Lee, T. H. Kim, G. J. Jeon, H. W. Jung, Y. S. Shin, J. Y. Han, B. H. Choi and I. C. Cheong. 2003. Detection of imprinted Quantitative Trait Loci (QTL) for Growth Traits in Pigs. Asian-Aust. J. Anim. Sci. 16:1087-1092   DOI
15 Paszek, A. A., P. J. Wilkie, G. H. Flickinger, G. A. Rohrer, L. J. Alexander, C. W. Beattie and L. B. Schook. 1999. Interval mapping of growth in divergent swine cross. Mamm. Genome 10:117-122   DOI
16 Sensky, P. L., T. Parr, R. G. Bardsley and P. J. Buttery. 1996. The relationship between plasma epinephrine concentration and the activity of the calpain enzyme system in porcine longissimus muscle. J. Anim. Sci. 74:380-387   DOI
17 Kim, T. H., B. H. Choi, H. K. Lee, H. S. Park, H. Y. Lee, D. H. Yoon, J. W. Lee, G. J. Jeon, I. C. Cheong, S. J. Oh and J. Y. Han. 2005. Identification of Quantitative traits loci (QTL) affecting growth traits in pigs. Asian-Aust. J. Anim. Sci. 18:1524-1528   DOI
18 Seaton, G.., C. S. Haley, S. A. Knott, M. Kearsey and P. M. Visscher. 2002. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics Applications Note. 18:339-340   DOI   ScienceOn
19 Green, P., K. Falls and S. Crooks. 1990. Documentation for CRIMAP, version 2.4. Washington Univ. School of Medicine, St. Louis, MO