Browse > Article
http://dx.doi.org/10.5713/ajas.2006.943

The Genetic Diversity of Trans-caucasian Native Sheep Breeds  

Hirbo, Jibril (International Livestock Research Institute)
Muigai, Anne (International Livestock Research Institute)
Naqvi, A.N. (Department of Biological Sciences, Karakuram International University)
Rege, E.D. (International Livestock Research Institute)
Hanotte, Olivier (International Livestock Research Institute)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.19, no.7, 2006 , pp. 943-952 More about this Journal
Abstract
The genetic variation in 10 indigenous Caucasian sheep breeds was studied with 14 micro-satellite loci in order to determine the genetic diversity among and between the breeds. Five breeds from Asia, five breeds from Europe and one breed from Africa, were included in order to study any relationships or influences they may have with the Caucasian sheep analyzed. A Karakul population from Uzbekistan was included in the study to see whether there was any Central Asian influence. All the 14 loci were found to be polymorphic in all the breeds, with the exception of ILST0056, which was monomorphic in Imeretian. A total of 231 alleles were generated from all the 688 individuals of the sheep analyzed. The mean number of alleles (MNA) at each locus was 16.5. The total number of alleles detected in all samples ranged from 13 in several loci to 23 in OarJMP029. Out of total 308 Hardy-Weinberg Equilibrium (HWE) tests, 85 gave significant results. After Bonferroni correction for multiple tests, 30 comparisons still remained significant to the experimental levels. The Gala population was the most diverse and Imeretian the least diverse with a MNA of 8.50 and 5.51, respectively. Gene diversity estimates exhibited the same trend and ranged from 0.803 in Gala and 0.623 in Imeretian, but generally there is higher diversity among the Caucasian breeds in comparison to other eference breeds. The closest breeds were Tushin and Bozakh with Da of 0.113 and most distant breeds were $Djallonk{\acute{e}}$ and North Rondalsy with Da of 0.445. Principal Component (PC) analyses were done. PC1 described 14% of the differences. PC2, which described 13% of the differences, further separated the Caucasian breeds from Asian breeds except Karakul and Awasi, and the two British breeds. PC3 described 10% of the differences, allowing better differentiation of the Caucasian breeds. A moderate degree of reliability was observed for individual-breed assignment from the 14 loci using different approaches among which the Bayesian method proved to be the most efficient. About 72% of individuals analyzed were correctly assigned to their respective breeds.
Keywords
Domestication; Sheep; Micro-satellites;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Arranz, J. J., Y. Bayon and F. San Primitivo. 1998. Genetic relationships among Spanish sheep using Micro-satellites. Anim. Genet. 29:435-440   DOI   ScienceOn
2 Dimitriev NGaE, L. K. 1989. Animal genetic resources of the USSR, pp. 205-254. FAO, Rome
3 Hancock, J. M. 1999. Micro-satellites and other simple sequences: genomic contect and mutational mechanisms. In: Microsatellites: Evolution and Applications (Ed. Goldstein DBaS, C), pp. 1-9. Oxford University Press, New York
4 Heyen, D. W., J. E. Beever and Y. Da. 1997. Exclusion probabilities of 22 bovine Micro-satellite markers in fluorescent multiplexes for semiautomated parentage testing. Anim. Genet. 28:21-27   DOI   ScienceOn
5 Hulme, D. J., J. P. Silk, J. M. Redwin, W. Barendse and K. J. Beh. 1994. Ten polymorphic ovine Micro-satellites. Anim. Genet. 25: 434-435   DOI   ScienceOn
6 Kemp, S. J., O. Hishida and J. Wambugu. 1995. A panel of polymorphic bovine, ovine and caprine Micro-satellite markers. Anim. Genet. 26:299-306   DOI   ScienceOn
7 Lumsden, J. M., E. A. Lord and G. W. Montgomery. 1996. Characterization and linkage mapping of ten sheep Microsatellite markers derived from a sheep$\times$hamster cell hybrid. Anim. Genet. 27:203-206   DOI   ScienceOn
8 Ota, T. 1993. Dispan: Genetic Distance and Phylogenetic Analysis. Pennsylvania State University, Pennsylvania
9 Penty, J. M., H. M. Henry, A. J. Ede and A. M. Crawford. 1993. Ovine Micro-satellites at the OarAE16, OarAE54, OarAE57, OarAE119 and OarAE129 loci. Anim. Genet. 24:219   DOI   ScienceOn
10 Rannala, B. and J. L Mountain. 1997. Detecting immigration by using multilocus genotypes. Proc. Nat. Acad. Sci. USA 94: 9197-9201
11 Raymond, MaR. F. 1995. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86:248-249   DOI
12 Ryder, M. L. 1983. Sheep and Man Duckworth, London
13 Scherf, B. D. 2000. World Watch List: for domestic animals. pp. 163, 513. FAO/UNEP, Rome
14 Wilson, I. J. and D. J. Balding. 1998. Genealogical Inference from Microsatellte Data. Genet. 150:499-510
15 Luikart, G., M. P. Biju-Duval and O. Ertugrul. 1999. Power of 22 Micro-satellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus). Anim. Genet. 30:431-438   DOI   ScienceOn
16 Nei, M., F. Tajima and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J. Mol. Evol. 19:153-170   DOI
17 Barton, N. H. and M. Slatkin. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56(Pt 3):409-415   DOI   ScienceOn
18 Nasidze, I. S. 1995. Genetic polymorphisms of the Caucasus ethnic groups: distribution of some blood group genetic markers (Part II). Gene. Geogr. 9:117-167
19 Nasidze, I., G. M. Risch and M. Robichaux. 2001. Alu insertion polymorphisms and the genetic structure of human populations from the Caucasus. Eur. J. Hum. Genet. 9:267-272   DOI
20 Uerpmann, H. P. 1996. Animal domestication - accident or intention. In: The Origins and Spread of Agriculture and Pastoralism in Eurasia (Ed. D. R. Harris), pp. 227-237. University College London Press, London
21 Chakraborty RaJ, L. 1993. A unified approach to study hypervariable polymorphisms: statistical considerations of determining relatedness and population distance. In: DNA fingerprinting: state of the science (Ed. S. D. Pena, J. C. R. Epplen and A. J. Jeffreys), pp. 153-175. Birkhauser, Basel
22 Hartl DLaC, A. G. 1989. Principles of Population Genetics, 2nd edn. Sinauer Associates Inc., Sunderland, Massachusetts
23 Sambrook, J. F. and T. Maniatis. 1989. Molecular cloning: A Laboratory Manual Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY
24 Weir, B. S. C. 1984. Estimating F-statistics for the analysis of population structure. Evol. 38:1358-1370   DOI   ScienceOn
25 Buchanan, F. C., L. J. Adams, R. P. Littlejohn, J. F. Maddox and A. M. Crawford. 1994. Determination of evolutionary relationships among sheep breeds using Micro-satellites. Genomics 22:397-403   DOI   ScienceOn
26 Buchanan, F. C., S. M. Galloway and A. M. Crawford. 1994b. Ovine Micro-satellites at the OarFCB5, OarFCB19, OarFCB20, OarFCB48, OarFCB129 and OarFCB226 loci. Anim. Genet. 25:60   DOI   ScienceOn
27 Moore, S. S. S., T. J. King, M. Mattick and D. J. S. Hetzel. 1991. The Conservation of dinucleotide Micro-satellites among mammalian genomes allows the use of heterologous primer pairs in closely related species. Genomics 10:654-660   DOI
28 Muigai, A. W. W., J. Hirbo, M. Imbuga, L. Iniguez, S. Kemp, O. Hanotte and J. E. O. Rege. 2000. Assessment of the genetic diversity and relationships among African fat-tailed sheep: Preliminary results
29 Diez-Tascon, C., R. P. Littlejohn, P. A. Almeida and A. M. Crawford. 2000. Genetic variation within the Merino sheep breed: analysis of closely related populations using Microsatellites. Anim. Genet. 31:243-251   DOI   ScienceOn
30 Cavalli-Sforza, L. L. M. and P. A. Pa. 1994. The history and geography of human genes Princeton University Press, Princeton
31 Cornuet, J. M., S. Piry, G. Luikart, A. Estoup and M. Solignac 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genet. 153: 1989-2000
32 Janson, K. 1987. Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biol. J. Linn. Society 30:245-256   DOI
33 Stallings, R. L., A. F. Ford and D. Nelson. 1991. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes. Genom. 10:807-815   DOI
34 Yoon, D. H., H. S. Kong, J. D. Oh, J. H. Lee, B. W. Cho, J. D. Kim, K. J. Jeon, C. Y. Jo, C. G. Jeon and H. K. Lee. 2005. Establishment of an individual identification System Based on Micro-satellite Polymorphism in Korean Cattle. Asian- Aust. J. Anim. Sci. 18(6):762-777   DOI
35 Brezinsky, L., S. J. Kemp and A. J. Teale. 1993. Five polymorphic bovine Micro-satellites (ILSTS010-014). Anim. Genet. 24:75-76   DOI   ScienceOn
36 Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Sci. 236:787-792   DOI
37 Page RDM. 1996. Treeview: an application to display phylogenetic trees in personal computers. Computer Applications in the Biosciences. 12:357-358
38 Wright, S. 1969. Evolution and the Genetics of Populations Vol. 2 The Theory of Gene Frequencies University of Chicago Press, Chicago
39 Kemp, S. J., L. Brezinsky and A. J. Teale. 1993. A panel of bovine, ovine and caprine polymorphic Micro-satellites. Anim. Genet. 24:363-365   DOI   ScienceOn
40 Nasidze, I. and M. Stoneking. 2001. Mitochondrial DNA variation and language replacements in the Caucasus. Proc. R. Soc. Lond. B Biol. Sci. 268:1197-1206
41 Trexler, J. C. 1988. Hierarchical organisation of genetic variation in the sailfin molly, Poecilia latipinna (Pisces poeciliidae). Evol. 42:1006-1017   DOI   ScienceOn