Browse > Article
http://dx.doi.org/10.5713/ajas.2006.727

Effects of Arsenic (AsIII) on Lipid Peroxidation, Glutathione Content and Antioxidant Enzymes in Growing Pigs  

Wang, L. (Feed Science Institute, Zhejiang University)
Xu, Z.R. (Feed Science Institute, Zhejiang University)
Jia, X.Y. (Feed Science Institute, Zhejiang University)
Jiang, J.F. (Feed Science Institute, Zhejiang University)
Han, X.Y. (Feed Science Institute, Zhejiang University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.19, no.5, 2006 , pp. 727-733 More about this Journal
Abstract
This experiment was conducted to investigate the effect of arsenic ($As^{III}$) on lipid peroxidation, glutathione content and antioxidant enzymes in growing pigs. Ninety-six Duroc-Landrace-Yorkshire crossbred growing pigs (48 barrows and 48 gilts, respectively) were randomly assigned to four groups and each group was randomly assigned to three pens (four barrows and four gilts). The four groups received the same corn-soybean basal diet which was supplemented with 0, 10, 20, 30 mg/kg As respectively. Arsenic was added to the diet in the form of $As_2O_3$. The experiment lasted for seventy-eight days after a seven-day adaptation period. Malondialdehyde (MDA) levels, glutathione (GSH) contents and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) activities were analyzed in serum, livers and kidneys of pigs. The results showed that pigs treated with 30 mg As/kg diet had a decreased average daily gain (ADG) (p<0.05) and an increased feed/gain ratio (F/G) (p<0.05) compared to the controls. The levels of MDA significantly increased (p<0.05), and the contents of GSH and the activities of SOD, CAT, GPx, GR and GST significantly decreased (p<0.05) in the pigs fed 30 mg As/kg diet. The results indicated that the mechanism of arsenic-induced oxidative stress in growing pigs involved lipid peroxidation, depletion of glutathione and decreased activities of some enzymes, such as SOD, CAT, GPx, GR and GST, which are associated with free radical metabolism.
Keywords
Growing Pigs; Arsenic; Growth Performance; Lipid Peroxidation; Glutathione; Antioxidant Enzymes;
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Carlberg, I. and B. Mannervik. 1985. Glutathione reductase. Methods Enzymol. 113:484-485   DOI
2 Falkner, K. C., G. P. McCallum, M. G. Cherian and J. R. Bend. 1993. Effects of acute sodium arsenite administration on the pulmonary chemical metabolizing enzymes, cytochrome P-450 monooxygenase, NAD(P)H: quinone acceptor oxidoreductase and glutathione-S-transferase in guinea pig: comparison with effects in liver and kidney. Chem. Biol. Interact. 86:51-68   DOI   ScienceOn
3 IARC, 1987. Arsenic and arsenic compounds (Group 1). In: IARC monographs on the evaluation of the carcinogenic risks to humans. Supplement 7, date accessed: 6 February 2003
4 Keyse, S. M. and R. M. Tyrell. 1989. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide and sodium arsenite. Proc. Natl. Acad. Sci. USA 86:99-103
5 Liu, S. X., M. Athar, I. Lippai, C. Waldren and T. K. Hei. 2001. Induction of oxygen radicals by arsenic: implications for mechanism of genotoxicity. Proc. Natl. Acad. Sci. USA. 98:1643-1648
6 Ng, J. C., L. Qi, J. Wang, X. Xiao, M. Shahin, M. R. Moore and A. S. Prakash. 2001. Mutations in C57BI/6J and metallothionein knock-out mice induced by chronic exposure to sodium arsenate in drinking water. In: (W. R. Chappell, C. O. Abernathy and R. L. Calderon). Arsenic Exposure and Health Effects. Elsevier, pp. 231-242
7 Ng, J. C., A. A. Seawright, L. Qi, C. M. Garnett, B. Chiswell and M. R. Moore. 1999. Tumors in mice induced by exposure to sodium arsenate in drinking water. In: (Ed. W. R. Chappell, C. O. Abernathy and R. L. Calderon), Arsenic Exposure and Health Effects. Elsevier, pp. 217-223
8 Searle, A. J. and R. Wilson. 1980. Glutathione peroxide effect of hydroxyl and bromine free radicals on enzyme activity. Int. J. Radiat. Biol. 37:213-217   DOI
9 Vreman, K., N. G. van der Veen, E. J. van der Mollen and W.G. de Ruig. 1986. Transfer of cadmium, lead, mercury and arsenic from feed into milk and various tissues of dairy cows: chemical and pathological data. Netherlands Journal of Agric. Sci. 34(2):129-144
10 Xu, A., L. J. Wu, R. Santella and T. K. Hei. 1999. Role of reactive oxygen species in the mutagenicity and DNA damage induced by crocidolite fibers in mammalian cells. Cancer Res. 59:5615- 5624
11 Zaman, K., R. S. MacGill, J. E. Johnson, S. Ahmad and R. S. Pardini. 1995. An insect model for assessing oxidative stress related to arsenic toxicity. Arch. Insect Biochem. Physiol. 29:199-210   DOI   ScienceOn
12 Wills, E. D. 1966. Mechanisms of lipid peroxide formation in animal tissues. Biochem. J. 99:667-676   DOI
13 Maiti, S. and A. K. Chatterjee. 2000. Differential response of cellular antioxidant mechanism of liver and kidney to arsenic exposure and its relation to dietary protein deficiency. Environ. Toxicol. Pharm. 8:227-235   DOI   ScienceOn
14 Czarnecki, G. L. and D. H. Baker. 1985. J. Anim. Sci. 60(2):440- 450   DOI
15 Lee, T. C. and I. C. Ho. 1995. Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch. Toxicol. 69:498-508   DOI
16 Wang, T. S., Y. F. Shu, Y. C. Liu, K. Y. Jan and H. Huang. 1997. Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicol. 121:229-37   DOI   ScienceOn
17 Styblo, M., S. V. Serves, W. R. Cullen and D. J. Thomas. 1997. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem. Res. Toxicol. 10:27-33   DOI   ScienceOn
18 Cunningham, M. L., M. J. Zvelebi and A. H. Fairlamb. 1994. Mechanism of inhibition of trypnothione reductase and glutathione reductase by trivalent arsenicals. Eur. J. Biochem. 221:285-295   DOI   ScienceOn
19 Holcman, A. and V. Stibilj. 1997.Asenic residuls in eggs from laying hens fed with a diet containing arsenic (III) oxide. Arch. Environ. Contam. Toxicol. 32(4):407-410   DOI
20 Habig, W. H., M. J. Pabst and W. B. Jakoby. 1974. Glutathione Stransferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249:7130-7139
21 Mandal, B. K. and K. T. Suzuki. 2002. Arsenic round the world: a review. Talanta 58:201-235   DOI   ScienceOn
22 Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121-126   DOI
23 Flora, S. J. S., Dubey Rupa, G. M. Kannan, R. S. Chauhan, B. P. Pant and D. K. Jaiswal. 2002. Meso 2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA effect on gallium arsenide induced pathological liver injury in rats. Toxicol. Letters 132:9-17   DOI   ScienceOn
24 Ellman, G. L., 1959. Tissue sulfhydryl groups. Arch. Biochem. 82:70-77   DOI   ScienceOn
25 Hughes, M. F. 2002. Arsenic toxicity and potential mechanisms of action. Toxicol. Letters 33:1-16   DOI   ScienceOn
26 Imlay, J. A. and S. Linn. 1988. DNA damage and oxygen radical toxicity. Sci. 240:1302-1309   DOI
27 Ramos, O., L. Carrizales, L. Yanez, L. Mejia, L. Batres, D. Ortiz and F. Diaz-Barriga. 1995. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Environ. Health Perspect. 103(Suppl 1):85- 98   DOI
28 Wang, T. S. and H. Huang. 1994. Active oxygen species are involved in the induction of micronuclei in XRS-5 cells. Mutagenesis 9:253-257   DOI   ScienceOn
29 Maiti, S. and A. K. Chatterjee. 2001. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency. Arch. Toxicol. 75(9):531-537   DOI
30 Flohe, L. and W. A. Gunzler. 1984. Assays of glutathione peroxidase. Methods Enzymol. 105:114-121   DOI
31 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248-254   DOI   ScienceOn
32 Liu, L., J. R. Trimarchi, P. Navarro, M. A. Blasco and D. L. Keefe. 2003. Oxidative stress contributes to arsenic induced telomere attrition, chromosomal instability and apoptosis. J. Biol. Chem. 278:31998-32004   DOI   ScienceOn
33 Yu, Shiguang and A. C. Beynen. 2000. High arsenic raises kidnek copper and lows plasma copper concentrstions in rats. Biol. Trace Element Res. 81:63-70   DOI   ScienceOn
34 Hei, T. K., C. R. Geard and E. J. Hall. 1984. Effects of cellular non-protein sulfhydryl depletion in radiation induced oncogenic transformation and genotoxicity in mouse 10T1/2 cells. Int. J. Radiat. Oncol. Biol. Phys. 10:1255-1259   DOI   ScienceOn
35 Kirkman, M. N. and G. F. Gaetani. 1984. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc. Natl. Acad. Sci. USA. 81:4343-4347
36 Holcman, A., S. Malovrh and V. Knex. 2001.The effect of diet containing arsenic(III) oxide on the traits of eggs. Zbornik Biotechniske Fakalter Univerze Ljubljani. Kmetijstvo, Zootehnika 78(2):211-218
37 Kono, Y. and I. Fridovich. 1982. Superoxide radicals inhibit catalase. J. Biol. Chem. 257:5751-5754
38 Asada, K., M. Takahashi and M. Nagate. 1974. Assay and inhibitors of spinach suoeroxide dismutase. Agric. Biol. Chem. 38:471-473   DOI
39 Morrison, L. L. and E. R. Chaves. 1983. Selenlum-arsenic interaction in the weanling pigs. Can. J. Anim. Sci. 63(1):239- 246   DOI
40 Singh, T. S. and K. K. Pant. 2004. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Separation and Purification Technol. 36:139-147   DOI   ScienceOn
41 Donoghue, D. J., H. Hairstone, C. V. Cope, M. J. Barthlomew, and D. D. Wagner. 1994. Incurred arsenc residules in chicken eggs. J. Food Prot. 57(3):218-223   DOI