Browse > Article
http://dx.doi.org/10.5713/ajas.2005.1800

Present Scenario and Future Prospects of Phytase in Aquafeed - Review -  

Debnath, Dipesh (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education)
Sahu, N.P. (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education)
Pal, A.K. (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education)
Baruah, Kartik (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education)
Yengkokpam, Sona (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education)
Mukherjee, S.C. (Department of Fish Pathology and Microbiology, Central Institute of Fisheries Education)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.18, no.12, 2005 , pp. 1800-1812 More about this Journal
Abstract
Aquaculture pollution is a major concern among the entrepreneurs, farmers and researchers. Excess discharge of phosphorus and nitrogen into the water bodies is the principal pollutant responsible for this. Plant-based feed ingredients due to its high phytic acid content enhances both nitrogen and phosphorus discharge thereby increasing the pollution level. Dietary phytase treatment is probably the best answer to address this problem. This review explains the nature and properties of phytate, its interactions with other nutrients and the application of phytase in aquafeed to reduce the pollution. This review also covers the different biotechnological aspects for lowering the phytic acid level in the common aquafeed ingredients, as an alternate approach to controlling the pollution level. Some of future research needs have also been highlighted to attract the attention of more researchers to this area.
Keywords
Aquafeed; Phytic Acid; Phytase; Minerals; Growth; Organic Acids;
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 Iqbal, T. H., K. O. Lewis and B. T. Cooper. 1994. Phytase activity in the human and rat small intestine. Gut. 35:1233-1236.
2 Jacob, J. P., S. Ibrahim, R. Blair, H. Namkung and I. K. Paik. 2000. Using enzyme supplemented, reduced protein diets to decrease nitrogen and phosphorus excretion of white leghorn hens. Asian-Aust. J. Anim. Sci. 13:1743-1749.
3 Jongbloed, A. W., A. Kemme and A. Mroz. 1996. The effect of organic acids in diets for growing pigs on the efficacy of microbial phytase. In: Phytase in Animal Nutrition and Waste Management. (Ed. M. B. Coelho and E. T. Kornegay). BASF Corporation, Mount Olive, NJ, p. 515
4 Lanari, D., E. D. Agaro and C. Turri. 1998. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquacult. 161:345-356.
5 Li, M. H. and E. H. Robinson. 1997. Microbial phytase can replace inorganic phosphorus supplements in channel catfish Ictalurus punctatus diets. J. World Aqua. Soc. 28:402-406.
6 Lopez, H. W., F. Leenhardt, C. Coudray and C. Remesy. 2002. Minerals and phytic acid interactions: is it a real problem for human nutrition? Int. J. Food Sci. Technol. 37:727-739.
7 Oliva-Teles, A., J. P. Pereira, A. Gouveia and E. Gomes. 1998. Utilization of diets supplemented with microbial phytase by seabass (Dicentrarchus labrax) juveniles. Aquat. Living Resour. 11:255-259.
8 Raboy, V. 1997. Accumulation and storage of phosphate and minerals. In: Cellular and molecular biology of plant seed development. (Ed. B. A. Larkins and I. K. Vasil). Kluwer Academic publishers, Dordrecht, The Netherlands, pp. 441-477.
9 Ravindran, V., W. L. Bryden and E. T. Kornegay. 1995. Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev. 6:125-143.
10 Rodriguez, E., E. J. Mullaney and X. G. Lei. 2000. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem. Biophys. Res. Comm. 268:373-378.
11 Sandberg, A. S., M. Brune, N. G. Carlsson, L. Hallberg, E. Skoglund and H. L. Rossander. 1999. Inositol phosphates with different number of phosphate groups influence iron absorption in humans. Am. J. Clin. Nutr. 70:240-246.
12 Shim, Y. H., B. J. Chae and J. H. Lee. 2003. Effects of phytase and carbohydrases supplementation to diet with a partial replacement of soybean meal with rapeseed meal and cottonseed meal on growth performance and nutrient digestibility of growing pigs. Asian-Aust. J. Anim. Sci. 16:1339-1347.
13 Spinelli, J., C. R. Houle and J. C. Wekell. 1983. The effects of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquacult. 30:71-83.
14 Teskeredzic, Z., D. A. Higgs, B. S. Dosanjh, J. R. McBride, R. W. Hardy, R. M. Beames, M. Simell, T. Vaara and R. B. Bridges. 1995. Assessment of unphytinized and dephytinized rapeseed protein concentrate as sources of dietary protein for juvenile rainbow trout (Oncorhynchus mykiss). Aquacult. 131:261-277.
15 Thiel, U., P. P. Hoppe, F. J. Schoner and E. Yeigan. 1993. Influence of microbial phytase supplementation on the retention of Zn, P and Ca in broiler chicks. Proc. Soc. Nutr. Physiol. 47:20.
16 Thompson, L. U. 1986. Phytic acid: a factor influencing starch digestibility and blood glucose response. In: Phytic Acid: chemistry and applications. (Ed. E. Graf). Pilatus Press, Minneapolis, pp. 173.
17 Ullah, A. H. J. and D. M. Gibson. 1987. Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRI. 3135: purification and characterization. Prep. Biochem. 17:63-91.
18 Van Weerd, J. H., K. H. A. Khalaf, F. J. Aartsen and P. A. T. Tijssen. 1999. Balance trials with African catfish Clarias gariepinus fed phytase-treated soybean meal-based diets. Aqua. Nutr. 5:135-142.
19 Wyss, M., R. Brugger and A. Kronenberger. 1999a. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase): catalytic properties. Appl. Environ. Microbiol. 65:367-373.
20 Xavier, B. 2005. Effect of de-tannification and exogenous enzymes on growth and nutrient utilization of Labeo rohita fingerlings. M.F.Sc. Dissertation, Central Institute of Fisheries Education, Mumbai, India.
21 Cromwell, G. L., R. D. Coffey, H. J. Monegue and J. H. Randolph. 1995. Efficacy of low-activity, microbial phytase in improving the bioavailability of phosphorus in corn-soyabean meal diets for pigs. J. Anim. Sci. 73:449-456   DOI   PUBMED
22 Adeola, O. 1995. Digestive utilization of minerals by weanling pigs fed copper and phytase supplemented diets. Can. J. Anim. Sci. 75:603-610.
23 Adeola, O., B. V. Lawrence, A. L Sutten and T. R. Cline. 1995. Phytase-induced changes in mineral utilization in zincsupplemented diets for pigs. J. Anim. Sci. 73:3384-3391.
24 Anderson, P. A. 1985. Digestibility and amino acid availability in cereals and oilseeds, American Association of Cereal Chemists, St. Paul, MN.
25 Baruah, K., N. P. Sahu, A. K. Pal and D. Debnath. 2004. Dietary Phytase: An ideal approach for a cost effective and lowpolluting aquafeed. NAGA. 27 (3 and 4):15-19.
26 Cheng, Z. J. and R. W. Hardy. 2002. Effect of microbial phytase on apparent nutrient digestibility of barley, canola meal, wheat and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aqua. Nutr. 8:271-277.
27 De Silva S. S. and T. A. Anderson. 1995. Fish nutrition in aquaculture. Chapman and Hall Aquaculture Series 1, Chapman and Hall, London, UK.
28 Dvorakova, J., O. Volfova and J. Kopeck. 1997. Characterization of phytase produces by Aspergillus niger. Folia Microbiol. 42:349-352.
29 Greiner, R., K. D. Jany and A. M. Larsson. 2000. Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (phytases) from barley (Hordeum vulgare). J. Cereal Sci. 31:127-139.
30 Hamada, L. S. 1994. Use of polyethylene glycol and high performance chromatography for preparative seperation of Aspergilus ficuum acid phosphatases. J. Chromato. 658:371-380.   DOI
31 Hardy, R. W. 1998. Phytate. Aqua. Mag. 11/12:77-80.
32 Harland, F. B. and E. R. Morris. 1995. Phytin: A good or a bad food component. Nutr. Res. 15:733-754.
33 Hayakawa, T., Y. Toma and I. Igaue. 1989. Purification and characterization of acid phosphatases with or without phytase activity from rice bran. Agric. Biol. Chem. 53:1475-1483.
34 Papatryphon, E., R. A. Howell and J. H. Soares, Jr. 1999. Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase. J. World Aqua. Soc. 30:161-173.
35 Gatlin, D. M. and R. P. Wilson. 1984. Zinc supplementation of practical channel catfish diets. Aquacult. 41:31-36.
36 Golovan, S. P., M. A. Hayes, J. P. Phillips and C. W. Forsberg. 2001. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nature Biotech. 19:429-433.
37 Mohanna, C. and Y. Nys. 1999. Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim. Feed Sci. Technol. 77:241-253.
38 Konietzny, U., R. Greiner and K. D. Jany. 1995. Purification and characterization of phytase from spelt. J. Food Biochem. 118:165-183.
39 Simons, P. C. M., H. A. J. Versteegh, A. W. Jongbloed, P. A. Kemme, P. Slump, K. D. Bos, W. G. E. Wolters, R. F. Beudeker and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64:525-540.
40 Greiner, R., U. Konietzny and K. D. Jany. 1993. Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303:107-113.
41 Pallauf, J. and G. Rimbach. 1997. Nutritional significance of phytic acid and phytase. Arch. Anim. Nutr. 50:301-319.
42 Wise, A. 1980. Dietary factors determining the biological activities of phytate. Nutr. Abstr. Rev. 53:791-806.
43 Stahl, C. H., Y. M. Han, K. R. Roneker, W. A. House and X. G. Lei. 1999. Phytase improves iron bioavailability for haemoblobin synthesis in young pigs. J. Anim. Sci. 77:2135-2142.
44 Han, Y. M., K. R. Roneker, W. G. Pond and X. G. Lei. 1998. Adding wheat middlings, microbial phytase and citric acid to corn-soybean meal diets for growing pigs may replace inorganic phosphorus supplementation. J. Anim. Sci. 76:2649-2653.
45 Kornegay, E. T. 1995. Important considerations for using microbial phytase in broiler and turkey diets. In: Proceedings of Second Symposium on Feed Enzymes (ESFE2). (Ed. W. van Hartingsveldt, M. Hessing, J. P. van der Lugt and W. A. C. Somers). Noordwijkerhout, Netherlands, TNO Nutrition and Food Research Institute, Zeist, pp. 189-197.
46 Singh, M. and A. D. Krikorian. 1982. Inhibition of trypsin activity in vitro by phytate. J. Agric. Food Chem. 30:799-800.
47 Jongbloed, A. W. 1987. Phosphorus in the feeding of pigs. Effects of diet on absorption and retention of phosphorus by growing pigs. Ph. D. Thesis, Lelystad, The Netherlands.
48 Shim, Y. H., B. J. Chae and J. H. Lee. 2004. Effects of phytase and enzyme complex supplementation to diets with different nutrient levels on growth performance and ileal nutrient digestibility of weaned pigs. Asian-Aust. J. Anim. Sci. 17:523-532.
49 Vielma, J., S. P. Lall, J. Koskela, F. J. Schöner and P. Mattila. 1998. Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Aquacult. 163:309-323.
50 Tacon, A. G. J. 1990. The essential nutrients. In: Standard methods for the nutrition and feeding of farmed fish and shrimp. Vol. 1. (Ed. A. G. J. Tacon). Argent Laboratories Press, Washington, pp. 70-84.
51 Alvi, A. S. 1994. Adventitious toxins in plan origin feedstuffs: Quantification and tolerance level in fish. Masters dissertation, Aligarh Muslim University, Aligarh, India.
52 Johnson, L. F. and M. E. Tate. 1969. Structure of phytic acid. Can. J. Chem. 47:63-73.
53 Nelson, T. S. 1967. The utilization of phytate phosphorus by poultry. Poult. Sci. 46:862-871.   DOI   ScienceOn
54 Usmani, N. and A. K. Jafri. 2002. Influence of dietary phytic acid on the growth, conversion efficiency, and carcass composition of mrigal Cirrhinus mrigala (Hamilton) fry. J. World Aqua. Soc. 33:199-204.   DOI   ScienceOn
55 Yamada, K., Y. Minoda and S. Yamamoto. 1968. Phytase from Aspergillus terreus. Part I. Production, purification and some general properties of the enzyme. Agric. Biol. Chem. 32:1275-1282.
56 Goel, M. and C. B. Sharma. 1979. Multiple forms of phytase in germinating cotyledons of Cucurbita maxima. Phytochem. 18:1939-1942.
57 Jongbloed, A. W., L. deJonge, P. A. Kemme, Z. Mroz and A. K. Kies. 1997. Proc. Sixth BASF Forum on Animal Nutrition, Ludwigshafen, Germany.
58 Richardson, N. L., D. A. Higgs, R. M. Beames and J. R. McBride. 1985. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth, and histolopathology in juvenile Chinook salmon (Oncorhynchus tshawytscha). J. Nutr. 115:553-567.
59 Rodehutscord, M. and E. Pfeffer. 1995. Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout (Oncorhynchus mykiss). Water Sci. Technol. 31:143-147.
60 Tyagi, P. K. and S. V. S. Verma. 1998. Phytate phosphorus content of some common poultry feedstuffs. Ind. J. Poult. Sci. 33:86-88.
61 Brune, M., H. L. Rossander, L. Hallberg, A. Gleerup and A. S. Sandberg. 1992. Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J. Nutr. 122:442-449   DOI   PUBMED
62 Cheryan, M. 1980. Phytic acid interactions in food systems. CRC Crit. Rev. Food Sci. Nutr. 13:297-335.
63 Debnath, D., N. P. Sahu, A. K. Pal, K. K. Jain, S. Yengkokpam and S. C. Mukherjee. 2005b. Mineral status of Pangasius pangasius (Hamilton) fingerlings in relation to supplemental phytase: absorption, whole body and bone mineral content. Aqua. Res. 36:326-335.
64 Hamada, J. S. 1996. Isolation and identification of the multiple forms of soybean phytases. J. Am. Oil Chemists’ Soc. 73:1143-1151.   DOI   ScienceOn
65 Hughes, K. P. and J. H. Soares, Jr. 1998. Efficacy of phytase on phosphorus utilization in practical diets fed to striped bass, Morone saxatilis. Aqua. Nutr. 4:133-140.
66 Hossain, M. A. and K. Jauncey. 1991. The effects of varying dietary phytic acid, calcium and magnesium levels on the nutrition of common carp, Cyprinus carpio. In: Fish Nutrition in Practice. Proc. 4th Int. Symp. Fish Nutrition and Feeding, Biarritz, France. (Ed. S. J. Kaushik and P. Luquet). pp. 705-715.
67 Paik, I. K., J. S. Um, S. J. Lee and J. G. Lee. 2000. Evaluation of the efficacy of crude phytase prerarations in broiler chickens. Asian-Aust. J. Anim. Sci. 13:673-680.
68 Satoh, S., W. E. Poe and R. P. Wilson. 1989. Effect of supplemental phytate and/ or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebrae of channel catfish. Aquacult. 80:155-161.
69 Halver, J. E. 1989. The vitamins. In: Fish nutrition. (Ed. J. E. Halver). Academic Press, Inc., San Diego, USA, pp. 31-109.
70 Heindl, U. 2002. Phytase: How does the enzyme work in fish nutrition? Asian Aqua. Mag. 3/4:22-24.
71 Lonnerdal, B., A. S. Sandberg, B. Sandstrom and C. Kunz. 1989. Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. J. Nutr. 119:211-221.
72 Sasakawa, N., M. Sharif and M. R. Hanley. 1995. Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem. Pharmacol. 50:137-146.
73 Taiz, L. and E. Zeiger. 1998. Plant defenses: Surface protectants and secondary metabolites. In: Plant Physiology. (Ed. L. Taiz and E. Zaiger). Sinauer Associates Inc., Massachusetts, pp. 347-377.
74 NRC (National Research Council). 1993. Nutrient Requirements of Fish. National Academy Press, Washington, DC, USA.
75 Paik, I. K. 2003. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian-Aust. J. Anim. Sci. 16:124-135.   DOI
76 Cain, K. D. and D. L. Garling. 1995. Pretreatment of soybean meal with phytase for salmonid diets to reduce phosphorus concentrations in hatchery effluents. Prog. Fish Cult. 57:114-119.
77 Lantsch, H. J., S. Hillenbrand, S. E. Scheuermann and K. H. Menke. 1992. Comparative study of phosphorus utilization from wheat, barley, corn diets by young rats and pigs. J. Anim. Physiol. Anim. Nutr. 67:123-132.
78 Hidvegi, M. and R. Lasztity. 2002. Phytic acid content of cereals and legumes and interaction with proteins. Periodica Polytechnica Ser. Chem. Eng. 46:59-64.
79 Pointillart, A., A. Fourdin and N. Fontaine. 1987. Importance of cereal phytase activity for phytate phosphorus utilization by growing pigs fed diets containing triticale or corn. J. Nutr. 29:907-912.
80 Sugiura, S. H., J. Gabaudan, F. M. Dong and R. W. Hardy. 2001. Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout (Oncorhynchus mykiss Walbaum) fed soybean meal-based diets. Aqua. Res. 32:583-592   DOI   ScienceOn
81 Yan, W., R. C. Reigh and Z. Xu. 2002. Effects of fungal phytase on utilization of dietary protein and minerals, and dephosphorylation of phytic acid in the alimentary tract of channel catfish Ictalurus punctarus fed an all-plant-protein diet. J. World Aqua. Soc. 33:10-22.
82 Storebakken, T., K. D. Shearer and A. J. Roem. 1998. Availability of protein, phosphorus and other elements in fish meal, soyprotein concentrate and phytase-treated soy-proteinconcentrate-based diets to Atlantic salmon, Salmo salar. Aquacult. 161:365-379.
83 Baldi, B. G., J. J. Scott, J. D. Everard and F. A. Loewus. 1988. Localisation of constitutive phytases in lily pollen and properties of the pH 8 form. Plant Sci. 12:180-185.
84 Baruah, K. 2004. Effect of dietary microbial phytase and acidifier on the bioavailability of nutrients in the diet of Labeo rohita fingerlings. M. F. Sc. Dissertation, Central Institute of Fisheries Education, Mumbai, India.
85 Nakano, T., T. Joh, E. Tokumoto and T. Hayakawa. 1999. Purification and characterization of phytase from bran of Triticum aestivum L cv Nourin 61. Food Sci. Technol. Res. 5:18-23.
86 Moore, E., V. R. Helly, O. M. Coneely, P. P. Ward, R. F. Power and D. R. Headon. 1995. Molecular cloning expression and evaluation of phosphohydrolases for phytate degrading activity. J. Indus. Microbiol. 114:396-402.
87 Cosgrove, D. J. 1966. The chemistry and biochemistry of inositol polyphosphates. Rev. Pure Appl. Chem. 16:297-335.
88 Kim, B. G., J. Z. Tian, J. S. Lim, D. Y. Kil, H. Y. Jeon, Y. K. Chung and Y. Y. Kim. 2004. Influences of enzyme supplementation on growth, ileal and apparent fecal digestibility and morphology of small intestine in pigs. Asian-Aust. J. Anim. Sci. 17:1729-1735.
89 Lall, S. P. 1991. Digestibility, metabolism and excretion of dietary phosphorus. In: Nutritional Strategies and Aquaculture Waste. Proc. 1st Int. Symo. Nutritional Strategies in Management of Aquaculture Waste. (Ed. C. B. Cowey and C. Y. Cho). Guelph, Ontario, pp. 77-90.
90 Pallauf, J., D. Hohler and G. Rimbach. 1992. Effect of microbial phytase supplementation to a maize-soya diet on the apparent absorption of Mg, Fe, Cu, Mn and Zn and parameters of Zn status in piglets. J. Anim. Physiol. Anim. Nutr. 68:1-9.
91 Lenis, N. P. and A. W. Jongbloed. 1999. New technologies in low pollution swine diets: Diet manipulation and use of synthetic amino acids, phytase and phase feeding for reduction of nitrogen and phosphorus excretion and ammonia emission-Review. Asian-Aust. J. Anim. Sci. 12:305-327.
92 Bedford, M. R. and H. Schulze. 1998. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11:91-114.
93 Hossain, M. A. and K. Jauncey. 1990. Detoxification of linseed and sesame meal and evaluation of their nutritive value in the diet of carp (Cyprinus carpio L.). Asian Fish. Sci. 3:169-183.
94 Mitchell, D. B., K. Vogel, B. J. Wenmann, L. Pasamontes and A. P. G. M. van Loon. 1997. The phytase subfamily of histidine and acid phosphatases isolation: isolation of gene for two novel phytases from fungi Aspergilus terreus and Myeeliophthora thermophila. Microbiol. 143:245-252.
95 Greiner, R., E. Haller, U. Konietzny and K. D. Jany. 1997. Purification and characterization of phytase from Klebsiella terrigena. Arch. Biochem. Biophys. 341:201-206.
96 Lei, X., K. K. Pao, E. R. Miller, D. E. Ullrey and M. T. Yokoyama. 1993. Supplemental microbial phytase improves bioavailability of dietary zinc to weaning pigs. J. Nutr. 123:1117-1123.
97 Papatryphon, E. and J. H. Soares, Jr. 2001. The effect of phytase on apparent digestibility of four practical plant feedstuffs fed to striped bass, Morone saxatilis. Aqua. Nutr. 7:161-167.
98 Selle, P. H., V. Ravindran, P. H. Pittolo and W. L. Bryden. 2003a. Effects of phytase supplementation of diets with two tiers of nutrient specifications on growth performance and protein efficiency ratios of broiler chickens. Asian-Aust. J. Anim. Sci. 16:1158-1164.
99 Riche, M. and P. B. Brown. 1996. Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquacult. 142:269-282.
100 Paik, I. K. 2001. Management of excretion of phosphorus, nitrogen and pharmacological level minerals to reduce environmental pollution from animal production-review. Asian-Aust. J. Anim. Sci. 14:384-394.   DOI
101 Yi, Z., E. T. Kornegay and D. M. Denbow. 1996. Supplemental microbial phytase improves zinc utilization in broilers. Poult. Sci. 75:540-546.
102 Houde, R. l., I. Alli and S. Kermasha. 1990. Purification and characterization of canola seed (Brassica sp.) phytase. J. Food Biochem. 114:331-351.
103 Reddy, N. R., S. K. Sathe and D. K. Saunkhe. 1982. Phytases in legumes and cereals. Adv. Food Res. 28:1-92.
104 Pasamontes, L., M. Haiker, M. Wyss, M. Tessier and A. P. G. M. van Loon. 1997. Gene cloning, purification and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63:1696-1700.
105 Ravindran, V. and E. T. Kornegay. 1993. Acidification of weaner pig diet: a review. J. Sci. Food Agric. 62:313-322.
106 Bitar, K. and J. G. Reinhold. 1971. Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf and man. Biochem. Biophys, Acta. 314:227-233.
107 Debnath, D., A. K. Pal, N. P. Sahu, K. K. Jain, S. Yengkokpam and S. C. Mukherjee. 2005a. Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aqua. Res. 36:180-187.
108 Mullaney, E. J., C. B. Daly and A. H. J. Ullah. 2000. Advances in phytase research. Adv. Appl. Microbiol. 47:157-199.
109 Wodzinski, R. J. and A. H. J. Ullah. 1996. Phytase. Adv. Appl. Microbiol. 42:263-302.
110 Bali, A. and T. Satyanarayana. 2001. Microbial phytases in nutrition and combating phosphorus pollution. Everyman’s Sci. 4:207-209.
111 Powell, K. 2003. Eat your veg. Nature. 24 Nov.:378-379.
112 Rodehutscord, M. 1995. Phytase and carbohydrates in diets for rainbow trout? In: Sec. Eur. Symp. On Feed Enzymes. (Ed. W. van Hartingsveldt, M. Hessing, J. P. van der Lugt and W. A. C. Somers). TNO Nutrition and Food Research Inst., Zeist, The Netherlands. pp. 229-235.
113 Vohra, A. and T. Satyanarayan. 2003. Phytases: microbial sources, production, purification and potential biotechnological applications. Crit. Rev. Biotechnol. 23:29-60.
114 Peng, Y. L., Y. M. Guo and J. M. Yuan. 2003. Effects of microbial phytase replacing partial inorganic phosphorus supplementation and xylanase on the growth performance and nutrient digestibility in broilers fed wheat-based diets. Asian-Aust. J. Anim. Sci. 16:239-247.
115 Yoon, J. H., L. U. Thompson and D. J. Jenkins. 1983. The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response. Am. J. Clin. Nutr. 38:835-842   DOI   PUBMED
116 Eeckhout, W. and M. dePaepe. 1994. Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Technol. 47:19-29.
117 Jackson, L. S., M. H. Li and E. H. Robinson. 1996. Use of microbial phytase in channel catfish Ictalurus punctatus diets to improve utilization of phytate phosphorus. J. World Aqua. Soc. 27:309-313.
118 Maugenest, S., I. Martinez, B. Godin, P. Perez and A. M. Lescure. 1999. Structure o two maize phytate genes and their spatio temporal-expressionduring seedling development. Plant Mol. Biol. 39:502-514.
119 Omogbenigun, F. O., C. M. Nyachoti and B. A. Slominski. 2003. The effect of supplementing microbial phytase and organic acids to a corn-soybean based diet fed to early-weaned pigs. J. Anim. Sci. 81:1806-1813.
120 Sandstrom, B. and A. S. Sandberg. 1992. Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. J. Trace Ele. Electro. Health Dis. 6:99-103.
121 Selle, P. H., V. Ravindran, G. Ravindran, P. H. Pittolo and W. L. Bryden. 2003b. Influence of phytase and xylanase supplementation on growth performance and nutrient utilization of broilers offered wheat-based diets. Asian-Aust. J. Anim. Sci. 16:394-402.
122 Vielma, J., T. Mäkinen, P. Ekholm and J. Koskela. 2000. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout (Oncorhynchus mykiss) and algal availability of phosphorus load. Aquacult. 183:349-362.
123 Singh, P. K., V. K. Khatta, R. S. Thakur, S. Dey and M. K. Sangwan. 2003. Effects of phytase supplementation on the performance of broiler chickens fed maize and wheat based diets with different levels of non-phytate phosphorus. Asian-Aust. J. Anim. Sci. 16:1642-1649.
124 Adeola, O. and J. S. Sands. 2003. Does supplemental dietary microbial phytase improve amino acid utilization? A perspective that it does not. J. Anim. Sci. 81:E78-E85.
125 Nayini, N. R. and P. Markakis. 1986. Phytase. In: Phytic acid: Chemistry and applications. (Ed. E. Graf). Pilatus Press, Minneapolis, Minnesota, pp. 101-118.
126 Robinson, E. H., M. H. Li and B. B. Manning. 2002. Comparison of microbial phytase and dicalcium phosphate for growth and bone mineralization of pond-raised channel catfish, Ictalurus punctatus. J. Appl. Aqua. 12:81-88.
127 Li, J., C. E. Hegeman, R. W. Hanlon, G. H. Lacy, D. M. Denbow and E. A. Grabau. 1997. Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol. 114:1-9   DOI
128 Cooper, J. R. and H. S. Gowing. 1983. Mammalian small intestine phytase (EC 3.1.3.8). Br. J. Nutr. 50:673-678.
129 Forster, I., D. A. Higgs, B. S. Dosanjh, M. Rowshandeli and J. Parr. 1999. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11$^{\circ}C$ fresh water. Aquacult. 179:109-125.
130 Hong, J. W., I. H. Kim, O. S. Kwon, S. H. Lee, H. D. Bae, S. J. Kang and U. M. Yang. 2001. Effects of phytezyme supplementation on the growth performance and nutrient digestibility in growing pigs. Asian-Aust. J. Anim. Sci. 14:1440-1443.
131 Robinson, E. H., L. S. Jackson and M. H. Li. 1996. Supplemental phosphorus in practical channel catfish diets. J. World Aqua. Soc. 27:303-308.
132 Schafer, A., W. M. Koppe, K. H. Meyer-Burgdorff and K. D. Gunther. 1995. Effects of microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal. Water Sci. Technol. 31:149-155.
133 Wyss, M., L. Pasamontes and A. Friedlein. 1999b. Biophysical Characterisation of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase): Molecular size, Glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65:359-366.
134 Um, J. S., H. S. Lim, S. H. Ahn and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian-Aust. J. Anim. Sci. 13:824-829.