Browse > Article
http://dx.doi.org/10.5713/ajas.2004.1635

Developmental Gene Expression of Antimicrobial Peptide PR-39 and Effect of Zinc Oxide on Gene Regulation of PR-39 in Piglets  

Wang, Y.Z. (Feed Science Institute of Zhejiang University)
Xu, Z.R. (Feed Science Institute of Zhejiang University)
Lin, W.X. (Feed Science Institute of Zhejiang University)
Huang, H.Q. (Feed Science Institute of Zhejiang University)
Wang, Z.Q. (Feed Science Institute of Zhejiang University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.17, no.12, 2004 , pp. 1635-1640 More about this Journal
Abstract
Two experiments were conducted to evaluate developmental gene expression of antimicrobial peptide PR-39 and effect of zinc oxide on gene regulation of PR-39 in piglets using semi-quantitative RT-PCR analysis. In experiment 1, fifteen female Tai-Hu pigs (a local breed in China) in five groups, each of three pigs at 1, 14, 28, 42 and 56 days of age were used to determine effect of age and weaning on mRNA expression of PR-39. In experiment 2, nine groups of pigs (total seventy-two female 36 days-age weanling Tai-Hu piglets) were assigned to three treatments (${ZnO}_0$, ${ZnO}_{100}$ and ${ZnO}_{3000}$). The feeding experimental period lasted 15 days. After feeding experiment, nine pigs with three animals in each treatment were chosen to determine the effect of ZnO on PR-39 mRNA expression of pigs. The results showed that PR-39 mRNA levels increased steadily in postnatal day 1-28 (preweaning), and weaning significantly decreased PR-39 mRNA expression of piglets (p<0.05). ${ZnO}_{3000}$ (3,000 mg zinc/kg diet) significantly increased PR-39 mRNA expression (p<0.05) when piglets were feed ${ZnO}_{3000}$ diet for 15 days. ${ZnO}_{100}$ (100 mg zinc/kg diet) also increased PR-39 gene expression, but the result was not statistically significant (p>0.05). The result was in accordance with the effect of ${ZnO}_{3000}$ and ${ZnO}_{100}$ on weight gain of piglets and prevention of diarrhea.
Keywords
PR-39; Piglet; Gene Expression; Zinc Oxide; RT-PCR; Antimicrobial Peptide;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Boman, H. G. 1998. Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand. J. Immunol. 48:15-25.
2 Bosi, P., C. Gremokolini and P. Trevisi. 2003. Dietary regulations of the intestinal barrier function at weaning. Asian-Aust. J. Anim. Sci. 16(4):596-608.
3 Zhao, C., L. Liu and R. I. Lehrer. 1994. Identification of a new member of the protegrin family by cDNA cloning. FEBS Lett. 346:285-288.
4 Klug, A. 1999. Zinc finger peptides for the regulation of gene expression. J. Nol. Biol. 293:215-218.
5 NRC, 1998. Nutrient Requirements of Swine, $10^{th}$ Revised Edition. National Academy of Sciences, Washington, DC.
6 Zhao, C., T. Ganz and R. I. Lehrer. 1995. Stucture of genes for two cathelin-associated antimicrobial peptides: prophenin-2 and PR-39. FEBS Lett. 376:130-134.
7 Wu, H., G. L. Zhang, C. R. Ross and F. Blecha. 1999. Cathelicidin gene expression in porcine tissues: Roles in ontogeny and tissue specificity. Infect. Immun. 67:439-442.
8 Carlson, M. S., G. M. Hill and J. E. Link. 1999. Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: effect on metallothioein and mineral concentrations. J. Anim. Sci. 77:1199-1207.
9 Case, C. L. and M. S. Carlson. 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J. Anim. Sci. 80:1917-1924.
10 Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics 11:1-42.   DOI   ScienceOn
11 Boman, H. G. 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13:61-92.   DOI   PUBMED   ScienceOn
12 Panyutich, A., J. Shi, P. L. Boutz, C. Zhao and T. Ganz. 1997. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infect. Immun. 65:978-985.
13 Roberts, E. S., E. V. Heugten, K. Lloyd, G. W. Almond and J. W. Spears. 2002. Dietary zinc effects on growth performance and immune response of endotoxemic growing pigs. Asian-Aust. J. Anim. Sci. 15(10):1496-1501.
14 Zhang, G., C. R. Ross and F. Blecha. 2000. Porcine antimicrobial peptides: new prospects for ancient molecules of host defense. Vet. Res. 31:277-296.
15 Zhao, C. Q., T. Ganz and R. I. Lehrer. 1995. Structures of genes for two cathelin-associated antimicrobial peptides: prophenin-2 and PR-39. FEBS Lett. 376:130-134.
16 Hill, G. M., G. L. Cromwell, T. D. Crenshaw, C. R. Dove, R. C. Ewan, D. A. Knabe, A. J. Lewis, C. W. Libal, D. C. Mahan, G. C. Shurson, L. L. Sorthern and T. L. Veum. 2000. Growth promotion effects and plasma changs from feeding high dietary concentration of zinc and copper to weanling pigs. J. Anim. Sci. 78:1010-1016.
17 Falchuk, K. 1998. The molecular basis for the role of zinc in developmental biology. Mol. Cell. Biochem. 188:41-48.
18 Hill, G. M., D. C. Mahan, S. D. Carter, G. L. Cromwell, R. C. Ewan, R. L. Harrold, A. J. Lewis, P. S. Miller, G. C. Shurson and T. L. Veum. 2001. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. J. Anim. Sci. 79:934-941.
19 Storice, P. and M. A. Zanetti. 1993. cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR-39. Biochem. Biophys. Res. Commun. 196:1058-1065.
20 Zanetti, M., L. Litteri, R. Gennaro, H, Horstmann and D. Romeo. 1990. Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules. J. Cell Biol. 111:1363-1371.
21 Harwig, S. S., V. N. Kokryakov, K. M. Swiderek, G. M. Aleshina, C. Zhao and R. I. Lehrer. 1995. Prophenin-1, an exceptionally proline-rich antimicrobial peptide from porcine leukocytes. FEBS Lett. 362:65-69.
22 Nicholas, P. and A. Mor. 1995. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 49:277-304.
23 Lehrer, R. I. and T. Ganz. 1999. Antimicrobial peptides in mammalian and insect host defense. Curr. Opin. Immunol. 11:23-27.
24 Gudmundsson, G. H., K. P. Magnusson, B. P. Chowdhary, M. Johansson, L. Andersson and H. G. Boman. 1995. Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39. Proc. Natl. Acad. Sci. USA 92:7085-7089.
25 Wu, H., G. L. Zhang, J. E. Minton, C. R. Ross and F. Blecha. 2000. Regulation of cathelicidin gene expression: Induction by lipopolysaccharide, Interleukin-6, retinoic acid, and salmonella enterica serovar typhimurium infection. Infect. Immun. 68:5552-5558.
26 Zanetti, M., R. Gennaro and D. Romeo. 1995. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374:1-5.
27 Wang, Y. Z., S. D. Yu and W. X. Lin. 2002. Cloning and sequence analysis of PR-39 gene of porcine antibacterial peptide in bone marrow. Journal of Zhejiang University 28(6):685-688.
28 Cousins, R. J. 1998. A role for zinc in the regulation of gene expression. Proc. Nutr. Soc. 57:307-311.   DOI   PUBMED   ScienceOn