Browse > Article
http://dx.doi.org/10.5713/ajas.2002.1747

Comparative Studies on Metabolic Rate and Calpain/Calpastatin Activity between Hanwoo and Holstein Beef  

Rhee, M.S. (Department of Food Science and Human Nutrition, Washington State University)
Ryu, Y.C. (Department of Animal Science, College of Life and Environmental Sciences, Korea University)
Kim, B.C. (Department of Animal Science, College of Life and Environmental Sciences, Korea University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.15, no.12, 2002 , pp. 1747-1753 More about this Journal
Abstract
The objectives of this study were to examine the effect of early short-term temperature conditioning on metabolic rate and calpain/calpastatin system and to compare variations in metabolic rate and calpain/calpastatin system between Hanwoo and Holstein beef. Longissimus thoracis et lumborum of the right carcass from 3 Hanwoo and 3 Holstein bulls were removed within 30 min of exsanguinations, cut into three pieces, and then temperature conditioned until 3 h postmortem (PM) at 2, 16, and $30^{\circ}C$, respectively. Rigor values (R-values; $R_248$, $R_250$, and $R_258$), pH, muscle temperature, glycogen content, $\mu$- and m-calpain activities, and calpastatin acitivity were measured at 1, 3, 9, and 24 h PM, respectively. Hanwoo beef had higher muscle temperature, faster metabolic rate at early PM stage in R-values, and lower $\mu$-calpain activity than Holstein beef (p<0.05). The $30^{\circ}C$ treatment maintained muscle temperature of $30^{\circ}C$ until 3 h PM and resulted in faster pH decline at 3 and 9 h PM (p<0.05) than other treatments. The $16^{\circ}C$ had higher (p<0.05) muscle temperature at 3 h PM than the $2^{\circ}C$, but no difference in all other traits was observed between the $2^{\circ}C$ and the $16^{\circ}C$. Early shortterm temperature treatment used in this study was not sufficient to effectively activate calpain/calpastatin system. Correlations among all traits except m-calpain and muscle temperature were generally high (r>0.60; p<0.001). Among R-values, $R_258$ had higher correlations with other metabolic traits than those of $R_248$ and $R_250$. These data suggest that early PM metabolic rate, $\mu$-calpain activity, and calpastatin activity may be closely related to each other. Variations in metabolic rate and $\mu$-calpain activity at early PM stage between Hanwoo and Holstein beef may imply variations in meat quality between both breeds.
Keywords
Hanwoo Beef; Holstein Beef; Temperature Conditioning; Metabolic Rate; Calpain; Calpastatin;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Boleman, S. L., S. J. Boleman, W. W. Morgan, D. S. Hale, D. B. Griffin, J. W. Savell, R. P. Ames, M. T. Smith, J. D. Tatum, T. G. Field, G. C. Smith, B. A. Gardner, J. B. Morgan, S. L. Northcutt, H. G. Dolezal and D. R. Gill, F. K. Ray. 1998. National beef quality audit-1995: Survey of producer-related defects and carcass quality and quantity attributes. J. Anim. Sci. 76:96-103.   PUBMED
2 McKeith, F. K., J. W. Savell, G. C. Smith, T. R. Dutson and Z. L. Carpenter. 1985. Physical, chemical, histological and palatability characteristics of muscles from three breed-types of cattle at different times-on-feed. Meat Sci. 15:37-50.   DOI   ScienceOn
3 Morton, J. D., R. Bickerstaffe, C. E. Le Couteur and G. M. Keeley. 1997. Comparison of different types of low voltage electrical stimulation on tenderisation: Interaction with stress and calpains. In Proceedings of the 43rd International Congress of Meat Science and Technology, Auckland, New Zealand, pp. 672-673.
4 Oh, S. J. 1990. Comparative studies on the palatability traits and the physico-chemical properties of beef muscles in Korean native cattle (Hanwoo) and Holstein. MS thesis, Korea University, Seoul, Korea.
5 Rhee, M. S. and B. C. Kim. 2001. Effect of low voltage electrical stimulation and temperature conditioning on postmortem changes in glycolysis and calpains activities of Korean native cattle (Hanwoo). Meat Sci. 58:231-237.   DOI   ScienceOn
6 Rhee, M. S., Y. C. Ryu, J. Y. Imm and B. C. Kim. 2000. Combination of low voltage electrical stimulation and early postmortem temperature conditioning on degradation of myofibrillar proteins in Korean native cattle (Hanwoo). Meat Sci. 55: 391-396.   DOI   ScienceOn
7 Seideman, S. C., T. L. Wheeler and M. Koohmaraie. 1988. The influence of muscle fiber size on tenderness in A-maturity heifers. J. Food Qual. 11:27-34.   DOI
8 Wheeler, T. L., J. W. Savell, H. R. Cross, D. K. Lunt and S. B. Smith. 1990. Mechanisms associated with the variation in tenderness of meat from Brahman and Hereford cattle. J. Anim. Sci. 68:4206-4220.   PUBMED
9 Wheeler, T. L., L. V. Cundiff and R. M. Koch. 1994. Effect of marbling degree on beef palatability in Bos Taurus and Bos indicus cattle. J. Anim. Sci. 72:3145-3151.   PUBMED
10 Jones, B. K. and J. D. Tatum. 1994. Predictors of beef tenderness among carcasses produced under commercial conditions. J. Anim. Sci. 72:1492-1501.   PUBMED
11 Koohmaraie, M., S. D. Schakelford and T. L. Wheeler. 1996. Meat toughening does not occur when rigor shortening is prevented. J. Anim. Sci. 74:2935-2942.   PUBMED
12 Smulders, F. F. M., B. B. Marsh, D. R. Swartz, R. L. Russel and M. E. Hoenecke. 1990. Beef tenderness and sarcomere length. Meat Sci. 28:349-363.   DOI   ScienceOn
13 O'Halloran, G. R., D. J. Troy and D. J. Buckley. 1997. The relationship between early post-mortem pH and the tenderisation of beef muscles. Meat Sci. 45:239-251.   DOI   ScienceOn
14 Koohmaraie, M. 1990. Quantification of $Ca^{2+}$-dependent protease activities by hydrophobic and ion-exchange chromatography. J. Anim. Sci. 68:659-665.   PUBMED
15 Marsh, B. B. 1993. Approaches to manipulate postmortem metabolism and meat quality. In Proceedings of the 39th International Congress of Meat Science and Technology, Calgarly, Canada, pp. 111-123.
16 Rhee, M. S., T. L. Wheeler, S. D. Shackelfored and M. Koohmaraie. 2002. Variation in palatability and biochemical traits within and among eleven major beef muscles. J. Anim. Sci. (In submit).
17 Marsh, B. B., T. P. Ringkob, R. L. Russel, D. R. Swartz and L. A. Pagal. 1987. Effects of early-postmortem glycolytic rate on beef tenderness. Meat Sci. 21:241-248.   DOI   ScienceOn
18 Geesink, G. H. and M. Koohmaraie. 2000. Ionic strength-induced inactivation of mu-calpain in postmortem muscle. J. Anim. Sci. 78:2336-2343.   PUBMED
19 Koohmaraie, M. 1996. Biochemical factors regulating the toughening and tenderization processes of meat. Meat Sci. 43:S193-S201.   DOI   ScienceOn
20 Homma, N., Y. Ikeuchi and A. Suzuki. 1995. Levels of calpain and calpastatin in meat subjected to high pressure. Meat Sci. 41: 251-260.   DOI   ScienceOn
21 Pike, M. M., T. P. Ringkob, D. D. Beekman, Y. O. Koh and W. T. Gerthoffer. 1993. Quadratic relationship between earlypostmortem glycolytic rate and beef tenderness. Meat Sci. 34:13-26.   DOI   ScienceOn
22 Bendall, J. R. 1978. Variability in rates of pH fall and of lactate production in the muscles on cooling beef carcasses. Meat Sci. 2:91-104.   DOI   ScienceOn
23 Goll, D. E., V. F. Thompson, R. G. Taylor, A. Ouali and R. R. Chou. 1999. The calpain system in muscle tissue. In Calpain: Pharmacology and Toxicology of Calcium-dependent Protease (Ed. K. K. W. Wang and P. W. Yuen). Taylor and Francis, Philadelphia, pp. 127-160
24 Shackelford, S. D., T. L. Wheeler and M. Koohmaraie. 1995. Relationship between shear force and trained sensory panel tenderness ratings of 10 major muscles from Bos indicus and Bos taurus cattle. J. Anim. Sci. 73:3333-3340.   PUBMED
25 Wheeler, T. L. and M. Koohmaraie. 1999. The extent of proteolysis is independent of sarcomere length in lamb longissimus and psoas major. J. Anim. Sci. 77:2444-2451.   PUBMED
26 Taylor, R. G., G. H. Geesink, V. F. Thomson, M. Koohmaraie and D. E. Goll. 1995. Is Z-disk degradation responsible for postmortem tenderization? J. Anim. Sci. 73:1351-1367.   PUBMED
27 Han, S. Y. 1996. Breeds of cattle. In Animal breeds. Sunjin, Seoul, Korea, pp. 53-55.
28 Dreiling, D. E., D. E. Brown, L. Casale and L. Kelly. 1987. Muscle glycogen: Comparison of iodine binding and enzyme digestion assays and application to meat samples. Meat Sci. 20:167-177.   DOI   ScienceOn
29 Kim. B. C., M. S. Rhee, Y. C. Ryu, J. Y. Imm and K. C. Koh. 2001. Early postmortem processing conditions on meat quality of Hanwoo (Korean native cattle) beef during storage. Asian-Aus. J. Anim. Sci. 14:1763-1768.
30 Koh, K. C., T. D. Binder, K. W. McMillan and M. B. Kim. 1993. The relationship between ATP and R-values in postmortem bovine longissimus dorsi muscle. Meat Sci. 33:253-263.   DOI   ScienceOn
31 Yoon, H. S. 1990. Dairy cattle. In Cattle of the world. Sumoon, Seoul, Korea, pp. 132-133.
32 Bickerstaffe, R., J. D. Morton, C. C. Daly and G. M. Keeley. 1996. Interaction of pre-slaughter stress and low voltage electrical stimulation on muscle preteolytic enzymes and meat tenderness of lambs. In Proceedings of the 42nd International Congress of Meat Science and Technology, Lillehammer, Norway, pp. 420-421.
33 Kim, B. C., S. Lee, K. C. Koh and S. T. Joo. 1993. The effects of breed and boning method on the palatability and quality traits of beef. Korean J. Anim. Sci. 35:427-433.
34 Whipple, G., M. Koohmaraie, M. E. Dikeman and J. D. Crouse. 1990. Effects of high-temperature conditioning on enzymatic activity and tenderness of Bos indicus longissimus muscle. J. Anim. Sci. 68:3654-3662.   PUBMED