Browse > Article
http://dx.doi.org/10.5572/ajae.2018.12.2.139

Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan  

Shimadera, Hikari (Osaka University)
Hayami, Hiroshi (Central Research Institute of Electric Power Industry)
Chatani, Satoru (National Institute for Environmental Studies)
Morikawa, Tazuko (Japan Automobile Research Institute)
Morino, Yu (National Institute for Environmental Studies)
Mori, Yasuaki (Japan Weather Association)
Yamaji, Kazuyo (Kobe University)
Nakatsuka, Seiji (Japan Weather Association)
Ohara, Toshimasa (National Institute for Environmental Studies)
Publication Information
Asian Journal of Atmospheric Environment / v.12, no.2, 2018 , pp. 139-152 More about this Journal
Abstract
The urban model inter-comparison study (UMICS) was conducted in order to improve the performance of air quality models (AQMs) for simulating fine particulate matter ($PM_{2.5}$) in the Greater Tokyo Area of Japan. UMICS consists of three phases: the first phase focusing on elemental carbon (UMICS1), the second phase focusing on sulfate, nitrate and ammonium (UMICS2), and the third phase focusing on organic aerosol (OA) (UMICS 3). In UMICS2/3, all the participating AQMs were the Community Multiscale Air Quality modeling system (CMAQ) with different configurations, and they similarly overestimated $PM_{2.5}$ nitrate concentration and underestimated $PM_{2.5}$ OA concentration. Various sensitivity analyses on CMAQ configurations, emissions and boundary concentrations, and meteorological fields were conducted in order to seek pathways for improvement of $PM_{2.5}$ simulation. The sensitivity analyses revealed that $PM_{2.5}$ nitrate concentration was highly sensitive to emissions of ammonia ($NH_3$) and dry deposition of nitric acid ($HNO_3$) and $NH_3$, and $PM_{2.5}$ OA concentration was highly sensitive to emissions of condensable organic compounds (COC). It was found that $PM_{2.5}$ simulation was substantially improved by using modified monthly profile of $NH_3$ emissions, larger dry deposition velocities of $HNO_3$ and $NH_3$, and additionally estimated COC emissions. Moreover, variability in $PM_{2.5}$ simulation was estimated from the results of all the sensitivity analyses. The variabilities on CMAQ configurations, chemical inputs (emissions and boundary concentrations), and meteorological fields were 6.1-6.5, 9.7-10.9, and 10.3-12.3%, respectively.
Keywords
Air quality simulation; Sensitivity analysis; Nitrate; Organic aerosol; Variability in simulation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kim, Y.J., Spak, S.N., Carmichael, G.R., Riemer, N., Stanier, C.O. (2014) Modeled aerosol nitrate formation pathways during wintertime in the great lakes region of North America. Journal of Geophysical Research 119, 12,420-12,445. doi:10.1002/2014JD022320.   DOI
2 Li, J., Dong, H., Zeng, L., Zhang, Y., Shao, M., Wang, Z., Sun, Y., Fu, P. (2015) Exploring Possible Missing Sinks of Nitrate and Its Precursors in Current Air Quality Models-A Case Simulation in the Pearl River Delta, China, Using an Observation-Based Box Model. Scientific Online Letters on the Atmosphere 11, 124-128, doi:10.2151/sola.2015-029.   DOI
3 Shimadera, H., Hayami, H., Morino, Y., Ohara, T., Chatani, S., Hasegawa, S., Kaneyasu, N. (2013) Analysis of summertime atmospheric transport of fine particulate matter in Northeast Asia. Asia-Pacific Journal of Atmospheric Sciences 49, 347-360, doi:10.1007/s13143-013-0033-y.   DOI
4 Binkowski, F.S., Arunachalam, S., Adelman, Z., Pinto, J. (2007) Examining photolysis rates with a prototype online photolysis module in CMAQ. Journal of Applied Meteorology and Climatology 46, 1252-1256, doi:10.1175/JAM2531.1.   DOI
5 Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.-H., Klimont, Z. (2004) A technology-based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research D: Atmospheres 109, D14203, doi:10.1029/2003JD003697.   DOI
6 Byun, D.W., Schere, K.L. (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied Mechanics Reviews 59, 51-77, doi:10.1115/1.2128636.   DOI
7 Carter, W.P.L. (2000) Implementation of the SAPRC-99 Chemical Mechanism into the Models-3 Framework, Report to the United States Environmental Protection Agency.
8 Chang, J.S., Brost, R.A., Isaksen, I.S.A., Madronich, S., Middleton, P., Stockwell, W.R., Walcek, C.J. (1987) A Three-Dimensional Eulerian Acid Deposition Model: Physical Concepts and Formulation. Journal of Geophysical Research 92, 14681-14700, doi:10.1029/JD092iD12p14681.   DOI
9 Chatani, S., Morikawa, T., Nakatsuka, S., Matsunaga, S., Minoura, H. (2011) Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan. Atmospheric Environment 45, 1383-1393, doi:10.1016/j.atmosenv.2010.12.036.   DOI
10 Makar, P.A., Nissen, R., Teakles, A., Zhang, J., Zheng, Q., Moran, M.D., Yau, H., Dicenzo, C. (2014) Turbulent transport, emissions and the role of compensating errors in chemical transport models. Geoscientific Model Development 7, 1001-1024, doi:10.5194/gmd-7-1001-2014.   DOI
11 Ministry of Economy, Trade and Industry (2011) Summary of PRTR Data in Japanese Fiscal Year 2009. http://www.meti.go.jp/policy/chemical_management/law/prtr/h21kohyo/gaiyou.html. (in Japanese)
12 Ministry of the Environment (2013) Final Report of the Environment Research and Technology Development Fund (C-1001: Evaluation of Validity and Predictability of Air Quality Modeling for Urban $PM_{2.5}$ in Japan). (in Japanese)
13 Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A. (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research 102, 16663-16682, doi:10.1029/97JD00237.   DOI
14 Morino, Y., Chatani, S., Hayami, H., Sasaki, K., Mori, Y., Morikawa, T., Ohara, T., Hasegawa, S., Kobayashi, S. (2010a) Inter-comparison of Chemical Transport Models and Evaluation of Model Performance for $O_{3}$ and $PM_{2.5}$ Prediction-Case Study in the Kanto Area in Summer 2007. Journal of Japan Society for Atmospheric Environment 45, 212-226, doi:10.11298/taiki.45.212.   DOI
15 Colella, P., Woodward, P.L. (1984) The piecewise parabolic method (PPM) for gasdynamical simulations. Journal of Computational Physics 54, 174-201, doi:10.1016/0021-9991 (84)90143-8.   DOI
16 Morino, Y., Chatani, S., Hayami, H., Sasaki, K., Mori, Y., Morikawa, T., Ohara, T., Hasegawa, S., Kobayashi, S. (2010b) Evaluation of Ensemble Approach for $O_{3}$ and $PM_{2.5}$ Simulation. Asian Journal of Atmospheric Environment 4, 150-156, doi:10.5572/ajae.2010.4.3.150.   DOI
17 Chatani, S., Morino, Y., Shimadera, H., Hayami, H., Mori, Y., Sasaki, K., Kajino, M., Yokoi, T., Morikawa, T.,Ohara, T. (2014) Multi-model analyses of dominant factors influencing elemental carbon in Tokyo Metropolitan Area of Japan. Aerosol and Air Quality Research 14, 396-405, doi:10.4209/aaqr.2013.02.0035.   DOI
18 Chatani, S., Matsunaga, S.N., Nakatsuka, S. (2015) Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmospheric Environment 120, 38-50, doi:10.1016/j.atmosenv.2015.08.086.   DOI
19 Chatani, S., Yamaji, K., Sakurai, T., Itahashi, S., Shimadera, H., Kitayama, K., Hayami H. (2018) Overview of model inter-comparison in Japan's study for reference air quality modeling (J-STREAM). Atmosphere 9, 19, doi:10.3390/atmos9010019.   DOI
20 Chen, F., Dudhia, J. (2001) Coupling an advanced landsurface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Monthly Weather Review 129, 569-585, doi:10.1175/1520-0493 (2001)129<0569:CAALSH>2.0.CO;2.   DOI
21 Donahue, N.M., Robinson, A.L., Stanier, C.O., Pandis, S.N. (2006) Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environmental Science and Technology 40, 2635-2643, doi:10.1021/es052297c.   DOI
22 Nawahda, A., Yamashita, K., Ohara, T., Kurokawa, J., Yamaji, K. (2012) Evaluation of premature mortality caused by exposure to $PM_{2.5}$ and ozone in East Asia: 2000, 2005, 2020. Water, Air, and Soil Pollution, 223, 3445-3459, doi:10.1007/s11270-012-1123-7.   DOI
23 Morino, Y., Nagashima, T., Sugata, S., Sato, K., Tanabe, K., Noguchi, T., Takami, A., Tanimoto, H., Ohara, T. (2015) Verification of chemical transport models for $PM_{2.5}$ chemical composition using simultaneous measurement data over Japan. Aerosol and Air Quality Research 15, 2009-2023, doi:10.4209/aaqr.2015.02.0120.   DOI
24 Nakanishi, M., Niino, H. (2006) An improved Mellor-Yamada Level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology 119, 397-407, doi:10.1007/s10546-005-9030-8.   DOI
25 Nansai, K., Suzuki, N., Tanabe, K., Kobayashi, S., Moriguchi, Y. (2004) Design of Georeference-Based Emission Activity Modeling System (G-BEAMS) for Japanese emission inventory management. Proc.: the 13th International Emission Inventory Conference in Clearwater, Florida, United States of America.
26 Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., Hayasaka, T. (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmospheric Chemistry and Physics 7, 4419-4444, doi:10.5194/acp-7-4419-2007.   DOI
27 Pleim, J.E., Chang, J.S. (1992) A non-local closure model in the convective boundary layer. Atmospheric Environment 26A, 965-981, doi:10.1016/0960-1686 (92)90028-J.   DOI
28 Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.-F., Pfister, G.G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S.L., Kloster, S. (2010) Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development 3, 43-67, doi:10.5194/gmd-3-43-2010.   DOI
29 Dudhia, J. (1989) Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences 46, 3077-3107, doi:10.1175/1520-0469 (1989)046<3077:NSOCOD>2.0.CO;2.   DOI
30 Pleim, J.E., Xiu, A., Finkelstein, P.L., Otte, T.L. (2001) A coupled land-surface and dry deposition model and comparison to field measurements of surface heat, moisture, and ozone fluxes. Water, Air and Soil Pollution: Focus 1, 243-252, doi:10.1023/A:1013123725860.   DOI
31 European Environment Agency. 2009. EMEP/EEA air pollutant emission inventory guidebook-2009. http://www.eea.europa.eu/publications/emep-eea-emissioninventory-guidebook-2009.
32 Gonzalez-Abraham, R., Chung, S.H., Avise, J., Lamb, B., Salathe, E.P., Jr., Nolte, C.G., Loughlin, D., Guenther, A., Wiedinmyer, C., Duhl, T., Zhang, Y., Streets, D.G. (2015) The effects of global change upon United States air quality. Atmospheric Chemistry and Physics 15, 12645-12665. doi:10.5194/acp-15-12645-2015.   DOI
33 Goto, D., Ueda, K., Ng, C.F.S., Takami, A., Ariga, T., Matsuhashi, K., Nakajima, T. (2016) Estimation of excess mortality due to long-term exposure to $PM_{2.5}$ in Japan using a high-resolution model for present and future scenarios. Atmospheric Environment 140, 320-332, doi:10.1016/j.atmosenv.2016.06.015.   DOI
34 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., Geron, C. (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics 6, 3181-3210, doi:10.5194/acp-6-3181-2006.   DOI
35 Sandu, A., Verwer, J.G., Blom, J.G., Spee, E.J., Carmichael, G.R., Potra, F.A. (1997) Benchmarking stiff ode solvers for atmospheric chemistry problems. II: Rosenbrock solvers. Atmospheric Environment 31, 3459-3472, doi:10.1016/S1352-2310 (97)83212-8.   DOI
36 Pleim, J.E. (2007) A combined local and non-local closure model for the atmospheric boundary layer. Part 1: Model description and testing. Journal of Applied Meteorology and Climatology 46, 1383-1395, doi:10.1175/JAM2539.1.   DOI
37 Pye, H.O.T., Pinder, R.W., Piletic, I.R., Xie, Y., Capps, S.L., Lin, Y.-H., Surratt, J.D., Zhang, Z., Gold, A., Luecken, D.J., Hutzell, W.T., Jaoui, M., Offenberg, J.H., Kleindienst, T.E., Lewandowski, M., Edney, E.O. (2013) Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation. Environmental Science and Technology 47, 11056-11064, doi:10.1021/es402106h.   DOI
38 Robinson, A.L., Donahue, N.M., Shrivastava, M.K., Weitkamp, E.A., Sage, A.M., Grieshop, A.P., Lane, T.E., Pierce, J.R., Pandis, S.N. (2007) Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging, Science 315, 1259, doi:10.1126/science.1133061.   DOI
39 Shimadera, H., Hayami, H., Chatani, S., Morino, Y., Mori, Y., Morikawa, T., Yamaji, K., Ohara, T. (2014a) Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate. Journal of Air Waste Management Association 64, 374-387, doi:10.1080/10962247.2013.778919.   DOI
40 Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K., Wang, X. (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 5, 1471-1492, doi:10.5194/gmd-5-1471-2012.   DOI
41 Hong, S.-Y., Dudhia, J., Chen, S.-H. (2004) A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Monthly Weather Review 132, 103-120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.   DOI
42 Shimadera, H., Hayami, H., Ohara, T., Morino, Y., Takami, A., Irei, S. (2014b) Numerical simulation of extreme air pollution by fine particulate matter in China in winter 2013. Asian Journal of Atmospheric Environment 8, 25-34, doi:10.5572/ajae.2014.8.1.025.   DOI
43 Shimadera, H., Kojima, T., Kondo, A. (2016) Evaluation of Air Quality Model Performance for Simulating Long-Range Transport and Local Pollution of $PM_{2.5}$ in Japan. Advances in Meteorology, No. 5694251, doi: 10.1155/2016/5694251.   DOI
44 Hagino, H., Morikawa, T., Hasegawa, S., Yonemochi, S., Sekiguchi, K., Kumagai, K., Yamaguchi, N., Iijima, A., Shimadera, H., Hayami, H. (2012) Measurement of Atmospheric Fine Particles using Aerosol Mass Spectrometer - Characterization of Organic Aerosols at Urban and Rural Sites in the Kanto Area during Summer of 2011 -. JARI Research Journal 20120803.
45 Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T.F., Monod, A., Prevot, A.S.H., Seinfeld, J.H., Surratt, J.D., Szmigielski, R., Wildt, J. (2009) The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmospheric Chemistry and Physics 9, 5155-5236.   DOI
46 Hertel, O., Berkowicz, R., Christensen, J., Hov, O. (1993) Test of two numerical schemes for use in atmospherictransport-chemistry models. Atmospheric Environment 27A, 2591-2611.
47 Xiu, A., Pleim, J.E. (2001) Development of a land surface model part I: Application in a mesoscale meteorology model. Journal of Applied Meteorology 40, 192-209, doi:10.1175/1520-0450 (2001)040<0192:DOALSM>2.0.CO;2.   DOI
48 Skamarock, W.C., Klemp, J.B. (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics 227, 3465-3485, doi:10.1016/j.jcp.2007.01.037.   DOI
49 Tokyo Metropolitan Government (2011) Report for survey on emission sources of fine particulate matter. https://www.kankyo.metro.tokyo.jp/air/attachement/02_hassei.pdf. (in Japanese)
50 Wakamatsu, S., Morikawa, T., Ito, A. (2013) Air pollution trends in Japan between 1970 and 2012 and impact of urban air pollution countermeasures. Asian Journal of Atmospheric Environment 7, 177-190, doi:10.5572/ajae.2013.7.4.177.   DOI
51 Zhang, Q., Streets, D.G., Carmichael, G.R., He, K., Huo, H., Kannari, A., Klimont, Z., Park, I., Reddy, S., Fu, J.S., Chen, D., Duan, L., Lei, Y., Wang, L., Yao, Z. (2009) Asian emissions in 2006 for the NASA INTEXB mission. Atmospheric Chemistry and Physics 9, 5131-5153, doi:10.5194/acp-9-5131-2009.   DOI
52 Kain, J.S. (2004) The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology 43, 170-181, doi:10.1175/1520-0450 (2004)043<0170:TKCPAU>2.0.CO;2.   DOI
53 Hong, S.-Y., Noh, Y., Dudhia, J. (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134, 2318-2341, doi:doi.org/10.1175/MWR3199.1.   DOI
54 Itahashi, S., Uno, I., Osada, K., Kamiguchi, Y., Yamamoto, S., Tamura, K., Wang, Z., Kurosaki, Y., Kanaya, Y. (2017) Nitrate transboundary heavy pollution over East Asia in winter. Atmospheric Chemistry and Physics 17, 3823-3843, doi:10.5194/acp-17-3823-2017.   DOI
55 Janjic, Z.I. (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure schemes. Monthly Weather Review 122, 927-945, doi:10.1175/1520-0493(1994).   DOI
56 Japan Petroleum Energy Center (2012a) Technical report of the Japan Auto-Oil Program: Emission inventory of road transport in Japan. Rep. JPEC-2011AQ-02-06,2012. (in Japanese)
57 Japan Petroleum Energy Center (2012b) Technical report of the Japan Auto-Oil Program: Emission inventory of sources other than road transport in Japan, Rep. JPEC-2011AQ-02-07. (in Japanese)
58 Kannari, A., Tonooka, Y., Baba, T., Murano, K. (2007) Development of multiple-species 1 kmx1 km resolution hourly basis emissions inventory for Japan. Atmospheric Environment 41, 3428-3439, doi:10.1016/j.atmosenv.2006.12.015.   DOI
59 Zheng, B., Zhang, Q., Zhang, Y., He, K.B., Wang, K., Zheng, G.J., Duan, F.K., Ma, Y.L., Kimoto, T. (2015) Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmospheric Chemistry and Physics 15, 2031-2049, doi:10.5194/acp-15-2031-2015.   DOI
60 Kajino, M., Inomata, Y., Sato, K., Ueda, H., Han, Z., An, J., Katata, G., Deushi, M., Maki, T., Oshima, N., Kurokawa, J., Ohara, T., Takami, A., Hatakeyama, S. (2012) Development of the RAQM2 aerosol chemical transport model and predictions of the Northeast Asian aerosol mass, size, chemistry, and mixing type. Atmospheric Chemistry and Physics 12, 11833-11856, doi:10.5194/acp-12-11833-2012.   DOI
61 Kelly, J.T., Bhave, P.V., Nolte, C.G., Shankar, U., Foley, K.M. (2010) Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model. Geoscientific Model Development 3, 257-273, doi:10.5194/gmd-3-257-2010.   DOI