Browse > Article
http://dx.doi.org/10.5572/ajae.2012.6.3.192

Ecophysiological Responses of Northern Birch Forests to the Changing Atmospheric CO2 and O3 Concentrations  

Kawaguchi, Korin (Graduate School of Agriculture, Hokkaido University)
Hoshika, Yasutomo (Research Faculty of Agriculture, Hokkaido University)
Watanabe, Makoto (Research Faculty of Agriculture, Hokkaido University)
Koike, Takayoshi (Research Faculty of Agriculture, Hokkaido University)
Publication Information
Asian Journal of Atmospheric Environment / v.6, no.3, 2012 , pp. 192-205 More about this Journal
Abstract
The effects on birch (Betula spp.) of elevated carbon dioxide ($CO_2$) and ozone ($O_3$), which are both increasing in the troposphere, are surveyed in detail based on the literature. Birches establish themselves in the open field after disturbances, and then become dominant trees in temperate or boreal forests. Ecophysiological approaches include the measurement of photosynthesis, biomass, growth, and survival of seedlings and trees. Elevated $CO_2$ levels give rise to a net enhancement of the growth of birch trees, whereas high $O_3$ generally reduces growth. Although the effects of the two are opposed, there is also an interactive effect. Basic physiological responses of the single genus Betula to $CO_2$ and $O_3$ are set out, and some data are summarized regarding ecological interactions between trees, or between trees and other organisms.
Keywords
Betula; Elevated carbon dioxide; Ozone; Tree physiology; Forest ecology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Riikonen, J., Holopainen, T., Oksanen, E., Vapaavuori, E. (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of $CO_{2}$ and $O_{3}$ in the field. Tree Physiology 25, 621-632.   DOI   ScienceOn
2 Riikonen, J., Kets, K., Darbah, J., Oksanen, E., Sober, A., Vapaavuori, E., Kubiske, M.E., Nelson, N., Karnosky, D.F. (2008a) Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of $CO_{2}$ and $O_{3}$. Tree Physiology 28, 243-254.   DOI   ScienceOn
3 Riikonen, J., Lindsberg, M.M., Holopainen, T., Oksanen, E., Lappi, J., Peltonen, P., Vapaavuori, E. (2004) Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiology 24, 1227- 1237.   DOI   ScienceOn
4 Riikonen, J., Maenpaa, M., Alavilamo, M., Silfver, T., Oksanen, E. (2009) Interactive effect of elevated temperature and $O_{3}$ on antioxidant capacity and gas exchange in Betula pendula saplings. Planta 230, 419- 427.   DOI
5 Riikonen, J., Percy, K.E., Kivimaenpaa, M., Kubiske, M.E., Nelson, N.D., Vapaavuori, E., Karnosky, D.F. (2010) Leaf size and surface characteristics of Betula papyrifera exposed to elevated $CO_{2}$ and $O_{3}$. Environmental Pollution 158, 1029-1035.   DOI   ScienceOn
6 Riikonen, J., Syrjaa, L., Tulva, I., Mand, P., Oksanen, E., Poteri, M., Vapaavuori, E. (2008b) Stomatal characteristics and infection biology of Pyrenopeziza betulicola in Betula pendula trees grown under elevated $CO_{2}$ and $O_{3}$. Environmental Pollution 156, 536-543.   DOI   ScienceOn
7 Safford, L.O., Bjorkbom, J.C., Zasada, J.C. (1990) Paper birch. Betula papyrifera Marsh. In Silvics of North America, vol.2, Hardwoods (Burns, R.M. and Honkala, B.H. Eds), USDA Agriculture Handbook 654, http:// www.na.fs.fed.us/pubs/silvics_manual/volume_2/betula /papyrifera.htm, retrieved on 10th Jan. 2012.
8 Karnosky, D.F., Pregitzer, K.S., Zak, D.R., Kubiske, M.E., Hendrey, G.R., Weinstein, D., Nosal, M., Percy, K.E. (2005) Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant, Cell and Environment 28, 965-981.   DOI   ScienceOn
9 Karnosky, D.F., Skelly, J.M., Percy, K.E., Chappelka, A.H. (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution un US forests. Environmental Pollution 147, 489-506.   DOI   ScienceOn
10 Karnosky, D.F., Zak, D.R., Pregitzer, K.S., Awmack, C.S., Bockheim, J.G., Dickson, R.E., Hendrey, G.R., Host, G.E., King, J.S., Kopper, B.J., Kruger, E.L., Kubiske, M.E., Lindroth, R.L., Mattson, W.J., McDonald, E.P., Noormets, A., Oksanen, E., Parsons, W.F.J., Percy, K.E., Podila, G.K., Riemenschneider, D.E., Sharma, P., Thakur, R., Sôber, A., Sôber, J., Jones, W.S., Anttonen, S., Vapaavuori, E., Mankovska, B., Heilman, W., Isebrands, J.G. (2003b) Tropospheric $O_{3}$ moderates responses of temperate hardwood forests to elevated $CO_{2}$: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology 17, 289-304.   DOI   ScienceOn
11 Karonen, M., Ossipov, V., Ossipova, S., Kapari, L., Loponen, J., Matsumura, H., Kohno, Y., Mikami, C., Sakai, Y., Izuta, T., Pihlaja, K. (2006) Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. Journal of Chemical Ecology 32, 1445-1458.   DOI
12 Kasurinen, A., Keinänen, M.M., Kaipainen, S., Nilsson, L.O., Vapaavuori, E., Kontro, M.H., Holopainen, T. (2005) Below-ground responses of silver birch trees exposed to elevated $CO_{2}$ and $O_{3}$ levels during three growing seasons. Global Change Biology 11, 1167- 1179.   DOI   ScienceOn
13 Jager, H.J., Krupa, S.V. (2009) Hormesis-its relevance in phytotoxicology. In Air Quality and Ecological Impacts (Legge, A.H. Ed), Developments in Environmental Science vol.9, Elsevier, pp. 137-152.
14 Kasurinen, A., Kokko-Gonzales, P., Riikonen, J., Vapaavuori, E., Holopainen, T. (2004) Soil $CO_{2}$ efflux of two silver birch clones exposed to elevated $CO_{2}$ and $O_{3}$ levels during three growing seasons. Global Change Biology 10, 1654-1665.   DOI   ScienceOn
15 Hynynen, J., Niemistö, P., Viherä-Aarnio, A., Brunner, A., Hein, S. (2010) Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83, 103-119.   DOI   ScienceOn
16 IPCC (2007) Technical summary. In Climate Change 2007: The Physical Science Basis (Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tingor, M.M.B., Miller, H.L. and Chen, Z. Eds), Cambridge University Press, New York, pp. 19-940.
17 Ji, L.Z., An, L.L., Wang, X.W. (2011) Growth responses of gypsy moth larvae to elevated $CO_{2}$: the influence of methods of insect rearing. Insect Science 18, 409-418.   DOI   ScienceOn
18 Juurola, E. (2003) Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedlings to elevated carbon dioxide concentrations. Tree Physiology 23, 85-95.   DOI   ScienceOn
19 Karlsson, P.E., Braun, S., Broadmeadow, M., Elcira, S., Emberson, L., Gimeno, B.S., Le Thiec, D., Novak, K., Oksanen, E., Schaub, M., Uddling, J., Wilkinson, M. (2007) Risk assessments for forest trees: the performance of the ozone flux versus the AOT concepts. Environmental Pollution 146, 608-616.   DOI   ScienceOn
20 Karlsson, P.E., Uddling, J., Skärby, L., Wallin, G., Selldén, G. (2003) Impact of ozone on the growth of birch (Betula pendula) saplings. Environmental Pollution 124, 485-495.   DOI   ScienceOn
21 Grelen, H.E. (1990) River birch. Betula nigra L. In Silvics of North America, vol.2, Hardwoods (Burns, R.M. and Honkala, B.H. Eds), USDA Agriculture Handbook 654, http://www.na.fs.fed.us/pubs/silvics_manual/ volume_2/betula/nigra.htm, retrieved on 10th Jan. 2012.
22 Karnosky, D.F., Percy, K.E., Thakur, R.C., Honrath, R.E. Jr. (2003a) Air pollution and global change: a double challenge to forest ecosystems. In Air Pollution, Global Change and Forests in the New Millennium (Karnosky, D.F., Percy, K.E., Chappelka, A.H., Simpson, C. and Pikkarainen, J. Eds), Developments in Environmental Science vol.3. Elsevier, Oxford, pp. 1-42.
23 Fowler, D., Pilegaard, K., Sutton, M.A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J.K., Granier, C., Neftel, A., Isaksen, I.S.A., Laj, P., Maione, M., Monks, P.S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink- Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J.P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.N., Ro-Poulsen, H., Cellier, P., Cape, J.N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P.I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M.W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M.C., de Leeuw, G., Flossman, A., Chaumerliac, N., Erisman, J.W. (2009) Atmospheric composition change: ecosystems-atmosphere interaction. Atmospheric Environment 43, 5193-5267.   DOI   ScienceOn
24 Govaerts, R., Frodin, D. (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae, and Ticodendraceae). The Royal Botanic Gardens.
25 Hokkaido Prefecture (2011) Forestry statistics of Hokkaido in the fiscal year 2010. http://www.pref.hokkaido. lg.jp/sr/sum/kcs/rin-toukei/22rtk.htm, retrieved on 10th Jan. 2012. (In Japanese)
26 Holmes, W.E., Zak, D.R., Pregitzer, K.S., King, J.S. (2003) Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated $CO_{2}$ and $O_{3}$. Global Change Biology 9, 1743-1750.   DOI   ScienceOn
27 Eguchi, N., Morii, N., Ueda, T., Funada, R., Takagi, K., Hiura, T., Sasa, K., Koike, T. (2008b) Changes in petiole hydraulic properties and leaf water flow in birch and oak saplings in a $CO_{2}$-enriched atmosphere. Tree Physiology 28, 287-295.   DOI   ScienceOn
28 Hoshika, Y., Hajima, T., Shimizu, Y., Takigawa, M., Omasa, K. (2011a) Estimation of stomatal ozone uptake of deciduous trees in East Asia. Annals of Forest Science 68, 607-616.   DOI   ScienceOn
29 Hoshika, Y., Shimizu, Y., Omasa, K. (2011b) A comparison between stomatal ozone uptake and AOT40 of deciduous trees in Japan. iForest 4, 128-135.   DOI
30 Eguchi, N., Karatsu, K., Ueda, T., Funada, R., Takagi, K., Hiura, T., Sasa, K., Koike, T. (2008a) Photosynthetic responses of birch and alder saplings grown in a free air $CO_{2}$ enrichment system in northern Japan. Trees 22, 437-447.   DOI
31 Eichelmann, H., Oja, V., Rasulov, B., Padu, E., Bichele, I., Pettai, H., Mols, T., Kasparova, I., Vapaavuori, E., Laisk, A. (2004) Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in $CO_{2}$- and $O_{3}$-enriched atmospheres. Plant, Cell and Environment 27, 479-495.   DOI   ScienceOn
32 Emberson, L.D., Büker, P., Ashmore, M.R. (2007) Assessing the risk caused by ground level ozone to European forest trees: a case study in pine, beech, and oak across different climate regions. Environmental Pollution 147, 454-466.   DOI   ScienceOn
33 Erdmann, G.G. (1990) Yellow birch. Betula alleghaniensis Britton. In Silvics of North America, vol.2, Hardwoods (Burns, R.M. and Honkala, B.H. Eds), USDA Agriculture Handbook 654, http://www.na.fs.fed.us/ pubs/silvics_manual/volume_2/betula/alleganiensis%20. htm, retrieved on 10th Jan. 2012.
34 FFPRI (2004) The Handbook of Wood Industry. (4th Ed.), Maruzen, Tokyo, pp. 192-193. (In Japanese)
35 Prozherina, N., Freiwald, V., Rousi, M., Oksanen, E. (2003) Interactive effect of springtime frost and elevated ozone on early growth, foliar injuries and leaf structure of birch (Betula pendula). New Phytologist 159, 623-636.   DOI   ScienceOn
36 Poorter, H., Roumet, C., Campbell, B.D. (1996) Interspecific variation in the growth response of plants to elevated $CO_{2}$: a search for functional types. In Carbon Dioxide, Populations, and Communities (Korner, C. and Bazzaz, F.A. Eds), Academic Press, San Diego, pp. 375- 412.
37 Potvin, C., Chapin, F.S., Gonzalez, A., Leadley, P., Reich, P., Roy, J. (2007) Plant biodiversity and responses to elevated carbon dioxide. In Terrestrial Ecosystems in a Changing World (Canadell, J.G., Pataki, D.E. and Pitelka, L.F. Eds), Springer, Berlin, pp. 103-112.
38 Pregitzer, K., Loya, W., Kubiske, M., Zak, D. (2006) Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 148, 503-516.   DOI
39 Quillet, A., Peng, C., Garneau, M. (2010) Toward dynamic global vegetation models for simulating vegetationclimate interactions and feedbacks: recent developments, limitations, and future challenges. Environmental Reviews 18, 333-353.   DOI
40 Raisanen, J., Tuomenvirta, H. (2009) Interactions between boreal forests and climate change. In Boreal Forest and Climate Change (Hari, P. and Kulmala, L. Eds), Advances in Global Change Research vol. 34. Springer, pp. 479-528.
41 Rey, A., Jarvis, P.G. (1997) Growth response of young birch trees (Betula pendula Roth.) after four and a half years of $CO_{2}$ exposure. Annals of Botany 80, 809-816.   DOI   ScienceOn
42 Peltonen, P.A., Vapaavuori, E., Julkunen-Tiitto, R. (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biology 11, 1305-1324.   DOI   ScienceOn
43 Rey, A., Jarvis, P.G. (1998) Long-term photosynthetic acclimation to increased atmospheric $CO_{2}$ concentration in young birch (Betula pendula) trees. Tree Physiology 18, 441-450.   DOI   ScienceOn
44 Pellinen, R.I., Korhonen, M.S., Tauriainen, A.A., Palva, E.T., Kangasjarvi, J. (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiology 130, 549-560.   DOI   ScienceOn
45 Peltonen, P.A., Vapaavuori, E., Heinonen, J., Julkunen- Tiitto, R., Holopainen, J.K. (2010) Do elevated atmospheric $CO_{2}$ and $O_{3}$ affect food quality and performance of folivorous insects on silver birch? Global Change Biology 16, 918-935.   DOI   ScienceOn
46 Percy, K.E., Awmack, C.S., Lindroth, R.L., Kubiske, M.E., Kopper, B.J., Isebrands, J.G., Pregitzer, K.S., Hendrey, G.R., Dickson, R.E., Zak, D.R., Oksanen, E., Sober, J., Harrington, R., Karnosky, D.F. (2002) Altered performance of forest pests under atmospheres enriched by $CO_{2}$ and $O_{3}$. Nature 420, 403-407.   DOI   ScienceOn
47 Percy, K.E., Mankovska, B., Hopkin, A., Callan, B., Karnosky, D.F. (2003) Ozone affects leaf surface-pest interactions. In Air Pollution, Global Change and Forests in the New Millennium (Karnosky, D.F., Percy, K.E., Chappelka, A.H., Simpson, C. and Pikkarainen, J. Eds), Developments in Environmental Science vol.3, Elsevier, Oxford, pp. 247-258.
48 Peterson, A.G., Ball, J.T., Luo, Y., Field, C.B., Curtis, P.S., Griffin, K.L., Gunderson, C.A., Norby, R.J., Tissue, D.T., Forstreuter, M., Rey, A., Vogel, C.S., Participants, C. (1999) Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric $CO_{2}$ enrichment. Plant, Cell and Environment 22, 1109- 1119.   DOI
49 Vahala, J., Ruonala, R., Keinänen, M., Tuominen, H., Kangasjärvi, J. (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiology 132, 185-195.   DOI   ScienceOn
50 UNECE (2004) Manual on methodologies and criteria for modelling and mapping critical loads & levels and air pollution effects, risks and trends. http://www.rivm.nl/ en/themasites/icpmm/manual-and-downloads/index. html, retrieved on 10th Jan. 2012.
51 Vanhatalo, M., Bäck, J., Huttunen, S. (2003) Differential impacts of long-term ($CO_{2}$) and $O_{3}$ exposure on growth of northern conifer and deciduous tree species. Trees 17, 211-220.
52 Vanhatalo, M., Huttunen, S., Bäck, J. (2001) Effects of elevated [$CO_{2}$] and $O_{3}$ on stomatal and surface wax characteristics in leaves of pubescent birch grown under field conditions. Trees 15, 304-313.   DOI
53 Vapaavuori, E., Holopainen, J.K., Holopainen, T., Julkunen- Tiitto, R., Kaakinen, S., Kasurinen, A., Kontunen- Soppela, S., Kostiainen, K., Oksanen, E., Peltonen, P., Riikonen, J., Tulva, I. (2009) Rising atmospheric $CO_{2}$ concentration partially masks the negative effects of elevated $O_{3}$ in silver birch (Betula pendula Roth). Ambio 38, 418-424.   DOI   ScienceOn
54 Vingarzan, R. (2004) A review of surface ozone background levels and trends. Atmospheric Environment 38, 3431-3442.   DOI   ScienceOn
55 Volin, J.C., Reich, P.B., Givnish, T.J. (1998) Elevated carbon dioxide ameliorates the negative effect of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytologist 138, 315-325.   DOI   ScienceOn
56 Paakkonen, E., Günthardt-Goerg, M.S., Holopainen, T. (1998) Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Annals of Botany 82, 49-59.   DOI   ScienceOn
57 Poorter, H., Perez-Soba, M. (2001) The growth response of plants to elevated $CO_{2}$ under non-optimal environment conditions. Oecologia 129, 1-20.   DOI
58 Oksanen, E., Sober, J., Karnosky, D.F. (2001) Impacts of elevated $CO_{2}$ and/or $O_{3}$ on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environment Pollution 115, 437-446.   DOI   ScienceOn
59 Onandia, G., Olsson, A.K., Barth, S., King, J.S., Uddling, J. (2011) Exposure to moderate concentrations of tropospheric ozone impairs tree stomatal response to carbon dioxide. Environmental Pollution 159, 2350-2354.   DOI   ScienceOn
60 Packee, E.C., Quang, P.X., Smith, R.R. (1992) Bolewood specific gravity of Alaskan northern forest trees. Forest Products Journal 42, 29-34.
61 Padu, E., Kollist, H., Tulva, I., Oksanen, E., Moldau, H. (2005) Components of apoplastic ascorbate use in Betula pendula leaves exposed to $CO_{2}$ and $O_{3}$ enrichment. New Phytologist 165, 131-142.
62 Paoletti, E., Grulke, N.E. (2005) Does living in elevated $CO_{2}$ ameliorate tree response to ozone?-A review on stomatal responses. Environmental Pollution 137, 483- 493.   DOI   ScienceOn
63 Paoletti, E., Schaub, M., Matyssek, R., Wieser, G., Augustaitis, A., Bastrup-Birk, A.M., Bytnerowicz, A., Günthardt- Goerg, M.S., Muller-Starck, G., Serengil, Y. (2010) Advances in air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environmental Pollution 158, 1986-1989.   DOI   ScienceOn
64 Berntson, G.M., Wayne, P.M., Bazzaz, F.A. (1997) Belowground architectural and mycorrhizal responses to elevated $CO_{2}$ in Betula alleghaniensis populations. Functional Ecology 11, 684-695.   DOI   ScienceOn
65 Agrell, J., Kopper, B., McDonald, E.P., Lindroth, R.L. (2005) $CO_{2}$ and $O_{3}$ effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Global Change Biology 11, 588-599.   DOI   ScienceOn
66 Akimoto, H. (2003) Global air quality and pollution. Science 302, 1716-1719.   DOI   ScienceOn
67 Alexeyev, V.A., Birdsey, R.A., Stakanov, V.D., Korotkov, I.A. (2000) Carbon storage in the Asian boreal forests of Russia. In Fire, Climate Change, and Carbon Cycling of the Boreal Forest (Kasischke, E.S. and Stocks, B.J. Eds), Ecological Studies 138, Springer, New York, pp. 239-257.
68 Cao, B., Dang, Q.L., Zhang, S. (2007) Relationship between photosynthesis and leaf nitrogen concentration in ambient and elevated [$CO_{2}$] in white birch seedlings. Tree Physiology 27, 891-899.   DOI   ScienceOn
69 Castovsky, S., Bazzaz, F.A. (1999) Elevated $CO_{2}$ influences the responses of two birch species to soil moisture: implications for forest community structure. Global Change Biology 5, 507-518.   DOI   ScienceOn
70 Wang, X.W., Ji, L.Z., Zhang, Q.H., Liu, Y., Wang, G.Q. (2009) Effects of elevated $CO_{2}$ on feeding preference and performance of the gypsy moth (Lymantria dispar) larvae. Journal of Applied Entomology 133, 47-57.   DOI   ScienceOn
71 Tamura, T., Yonekura, T., Nakaji, T., Feng, Y., Shimizu, H., Izuta, T. (2002) Field survey on phenological characteristics and leaf components of Betula ermanii Cham. and soil chemical property around Mt. Mae- Shirane, Oku-Nikko, Japan. Journal of Japan Society for Atmospheric Environment 37, 320-330. (In Japanese with English abstract)
72 Tausz, M., Grulke, N.E., Wieser, G. (2007) Defense and avoidance of ozone under global change. Environmental Pollution 147, 525-531.   DOI   ScienceOn
73 Tjoelker, M.G., Oleksyn, J., Reich, P.B. (1998) Seedlings of five boreal tree species differ in acclimation of net photosynthesis to elevated $CO_{2}$ and temperature. Tree Physiology 18, 715-726.   DOI   ScienceOn
74 Uddling, J., Günthardt-Goerg, M.S., Matyssek, R., Oksanen, E., Pleijel, H., Selldén, G., Karlsson, P.E. (2004) Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure. Atmospheric Environment 38, 4709-4719.   DOI   ScienceOn
75 Uddling, J., Hogg, A.J., Teclaw, R.M., Carroll, M.A., Ellsworth, D.S. (2010) Stomatal uptake of $O_{3}$ in aspen and aspen-birch forests under free-air $CO_{2}$ and $O_{3}$ enrichment. Environmental Pollution 158, 2023-2031.   DOI   ScienceOn
76 Uddling, J., Karlsson, P.E., Glorvigen, A., Selldén, G. (2005) Ozone impairs autumnal resorption of nitrogen from birch (Betula pendula) leaves, causing an increase in whole-tree nitrogen lass through litter fall. Tree Physiology 26, 113-120.
77 Oksanen, E. (2005) Northern conditions enhance the susceptibility of birch (Betula pendula Roth) to oxidative stress caused by ozone. In Plant Responses to Air Pollution and Global Change (Omasa, K., Nouchi, I. and De Kok, L.J. Eds), Springer, pp. 29-36.
78 Parsons, W.F.J., Bockheim, J.G., Lindroth, R.L. (2008) Independent, interactive, and species-specific responses of leaf litter decomposition to elevated $CO_{2}$ and $O_{3}$ in a northern hardwood forest. Ecosystems 11, 505-519.   DOI
79 Oksanen, E. (2001) Increasing tropospheric ozone level reduced birch (Betula pendula) dry mass within a five years period. Water, Air, and Soil Pollution 130, 947- 952.   DOI   ScienceOn
80 Oksanen, E. (2003) Responses of selected birch (Betula pendula Roth) clones to ozone change over time. Plant, Cell and Environment 26, 875-886.   DOI
81 Oksanen, E., Freiwald, V., Prozherina, N., Rousi, M. (2005a) Photosynthesis of birch (Betula pendula) is sensitive to springtime frost and ozone. Canadian Journal of Forest Research 35, 703-712.   DOI   ScienceOn
82 Oksanen, E., Manninen, S., Vapaavuori, E., Holopainen, T. (2009) Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland. Ambio 38, 413-417.   DOI   ScienceOn
83 Oksanen, E., Riikonen, J., Kaakinen, S., Holopainen, T., Vapaavuori, E. (2005b) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing $CO_{2}$ and ozone. Global Change Biology 11, 732-748.   DOI   ScienceOn
84 Oksanen, E., Rousi, M. (2001) Differences of Betula origins in ozone sensitivity based on open-field experiment over two growing seasons. Canadian Journal of Forest Research 31, 804-811.   DOI   ScienceOn
85 Uddling, J., Teclaw, R.M., Kubiske, M.E., Pregitzer, K.S., Ellsworth, D.S. (2008) Sap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone. Tree Physiology 28, 1231-1243.   DOI   ScienceOn
86 Kasurinen, A., Peltonen, P.A., Julkunen-Tiitto, R., Vapaavuori, E., Nuutinen, V., Holopainen, T., Holopainen, J.K. (2007) Effects of elevated $CO_{2}$ and $O_{3}$ on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant and Soil 292, 25-43.   DOI
87 Kasurinen, A., Riikonen, J., Oksanen, E., Vapaavuori, E., Holopainen, T. (2006) Chemical composition and decomposition of silver birch leaf litter produced under elevated $CO_{2}$ and $O_{3}$. Plant and Soil 282, 261-280.   DOI
88 Kerstiens, G. (1998) Shade-tolerance as a predictor of responses to elevated $CO_{2}$. Physiologia Plantarum 102, 472-488.   DOI   ScienceOn
89 Chapin, F.S., Hollingsworth, T., Murray, D.F., Viereck, L.A., Walker, M.D. (2006) Floristic diversity and vegetation distribution in the Alaskan Boreal Forest. In Alaska's Changing Boreal Forest (Chapin, F.S., Oswood, M.W., Van Cleve, K., Viereck, L.A. and Verbyla, D.L. Eds), Oxford Univ Press, New York, pp. 81-99.
90 Darbah, J.N.T., Kubiske, M.E., Nelson, N., Oksanen, E., Vapaavuori, E., Karnosky, D.F. (2008) Effects of decadal exposure to interacting elevated $CO_{2}$ and/or $O_{3}$ on paper birch (Betula papyrifera) reproduction. Environmental Pollution 155, 446-452.   DOI   ScienceOn
91 Uddling, J., Teclaw, R.M., Pregitzer, K.S., Ellsworth, D.S. (2009) Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Tree Physiology 29, 1367-1380.   DOI   ScienceOn
92 Saleem, A., Loponen, J., Pihlaja, K., Oksanen, E. (2001) Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch (Betula pendula ROTH). Journal of Chemical Ecology 27, 1049-1062.   DOI   ScienceOn
93 Sefcik, L.K., Zak, D.R., Ellisworth, D.S. (2006) Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Tree Physiology 26, 1589-1599.   DOI   ScienceOn
94 Shavnin, S., Maurer, S., Matyssek, R., Bilger, W., Scheidegger, C. (1999) The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula). Trees 14, 10-16.   DOI
95 Shimizu, H., Feng, Y.W. (2007) Ozone and/or water stress could have influenced the Betula ermanii Cham. Forest decline observed at Oku-Nikko, Japan. Environment Monitoring and Assessment 128, 109-119.   DOI
96 Sitch, S., Cox, P.M., Collins, W.J., Huntingford, C. (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791- 795.   DOI   ScienceOn
97 Smith, W.H. (1990) Air Pollution and Forests. (2nd Ed.), Springer-Verlag, New York, pp. 1-610.
98 Song, H.T., Cheng, S. (2010) Various growth strategies of yellow birch seedlings in multiple-abiotic factor changing environments. Plant, Soil and Environment 56, 235-243.
99 Matyssek, R., Sandermann, H. Jr. (2003) Impact of ozone on trees: an ecophysiological perspective. Progress in Botany 64, 349-404.   DOI
100 Oksanen, E., Saleem, A. (1999) Ozone exposure results in various carry-over effects and prolonged reduction in biomass in birch (Betula pendula Roth). Plant, Cell and Environment 22, 1401-1411.   DOI
101 Maurer, S., Matyssek, R. (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). II. Carbon balance, water-use efficiency and nutritional status of the whole plant. Trees 12, 11-20.
102 Maurer, S., Matyssek, R., Günthardt-Goerg, M.S., Landolt, W., Einig, W. (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). I. Responses at the leaf level. Trees 12, 1-10.
103 McDonald, E.P., Agrell, J., Lindroth, R.L. (1999) $CO_{2}$ and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia 119, 389-399.
104 Miller, P.R., Arbaugh, M.J., Temple, P.J. (1997) Ozone and its known and potential effects on forests in Western United States. In Forest Decline and Ozone (Sandermann, H., Wellburn, A.R. and Heath, R.L. Eds), Ecological Studies vol.127. Springer, Berlin, pp. 39-68.
105 Mortensen, L.M. (1995) Effect of carbon dioxide concentration on biomass production and partitioning in Betula pubescens Ehrh. seedlings at different ozone and temperature regimes. Environmental Pollution 87, 337-343.   DOI   ScienceOn
106 Nagashima, T., Ohara, T., Sudo, K., Akimoto, H. (2010) The relative importance of various source regions on East Asia surface ozone. Atmospheric Chemistry and Physics 10, 11305-11322.   DOI
107 Naja, M., Akimoto, H. (2004) Contribution of regional pollution and long-range transport to the Asia-Pacific region: analysis of long-term ozonesonde data over Japan. Journal of Geophysical Research 109, D21306.   DOI
108 Kitao, M., Koike, T., Tobita, H., Maruyama, Y. (2005) Elevated $CO_{2}$ and limited nitrogen nutrition can restrict excitation energy dissipation in photosystem II of Japanese white birch (Betula platyphylla var. japonica) leaves. Physiologia Plantarum 125, 64-73.   DOI   ScienceOn
109 King, J.S., Kubiske, M.E., Pregitzer, K.S., Hendrey, G.R., McDonald, E.P., Giardina, C.P., Quinn, V.S., Karnosky, D.F. (2005) Tropospheric $O_{3}$ compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric $CO_{2}$. New Phytologist 168, 623-636.   DOI   ScienceOn
110 King, J.S., Pregitzer, K.S., Zak, D.R., Sober, J., Isebrands, J.G., Dickson, R.E., Hendrey, G.R., Karnosky, D.F. (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric $CO_{2}$ and tropospheric $O_{3}$. Oecologia 128, 237-250.   DOI
111 Kitao, M., Lei, T.T., Koike, T., Kayama, M., Tobita, H., Maruyama, Y. (2007) Interaction of drought and elevated $CO_{2}$ concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability. Tree Physiology 27, 727-735.   DOI   ScienceOn
112 Mao, Q., Hoshika, Y., Watanabe, M., Koike, T. (2012) Symptom of ozone injured leaves in 3 kinds of birch species in Hokkaido. Boreal Forest Research. (In press)
113 Yamaji, K., Ohara, T., Uno, I., Kurokawa, J., Pochanart, P., Akimoto, H. (2008) Future prediction of surface ozone over east Asia using models-3 community multiscale air quality modeling system and regional emission inventory in Asia. Journal of Geophysical Research 113, D08306.
114 Zak, D.R., Holmes, W.E., Pregitzer, K.S. (2007a) Atmospheric $CO_{2}$ and $O_{3}$ alter the flow of $^{15}N$ in developing forest ecosystems. Ecology 88, 2630-2639.   DOI   ScienceOn
115 Zak, D.R., Holmes, W.E., Pregitzer, K.S., King, J.S., Ellisworth, D.S., Kubiske, M.E. (2007b) Belowground competition and the response of developing forest communities to atmospheric $CO_{2}$ and $O_{3}$. Global Change Biology 13, 2230-2238.   DOI   ScienceOn
116 Stockwell, W.R., Kramm, G., Scheel, H.E., Mohnen, V.A., Seiler, W. (1997) Ozone formation, destruction and exposure in Europe and the United States. In Forest Decline and Ozone (Sandermann, H., Wellburn, A.R. and Heath, R.L. Eds), Ecological Studies vol.127, Springer, Berlin, pp. 1-38.
117 Talhelm, A.F., Pregitzer, K.S., Giardina, C.P. (2012) Longterm leaf production response to elevated atmospheric carbon dioxide and tropospheric ozone. Ecosystems 15, 71-82.
118 NOAA (2012) Trends in atmospheric carbon dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html, retrieved on 7th Aug. 2012.
119 Manninen, S., Huttunen, S., Vanhatalo, M., Pakonen, T., Hamalainen, A. (2009) Inter- and intra-specific responses to elevated ozone and chamber climate in northern birches. Environmental Pollution 157, 1679-1688.   DOI   ScienceOn
120 Mao, Q.Z., Watanabe, M., Koike, T. (2010) Growth characteristics of two promising tree species for afforestation, birch and larch in the northeastern part of Asia. Eurasian Journal of Forest Research 13, 69-76.
121 Matsumura, H. (2001) Impacts of ambient ozone and/or acid mist on the growth of 14 tree species: an open-top chamber study conducted in Japan. Water, Air, and Soil Pollution 130, 959-964.   DOI   ScienceOn
122 Matsumura, H., Mikami, C., Sakai, Y., Murayama, K., Izuta, T., Yonekura, T., Miwa, M., Kohno, Y. (2005) Impacts of elevated $O_{3}$ and/or $CO_{2}$ on growth of Betula platyphylla, Betula ermanii, Fagus crenata, Pinus densiflora, and Cryptomeria japonica seedlings. Journal of Agricultural Meteorology 60, 1121-1124.   DOI
123 Mattson, M.J., Julkunen-Tiitto, R., Herms, D.A. (2005) $CO_{2}$ enrichment and carbon partitioning to phenolics: do plant responses accord better with the protein competition or the growth-differentiation balance models? Oikos 111, 337-347.   DOI   ScienceOn
124 Matyssek, R., Günthardt-Goerg, M.S., Maurer, S., Christ, R. (2002) Tissue structure and respiration of stems of Betula pendula under contrasting ozone exposure and nutrition. Trees 16, 375-385.   DOI
125 Wayne, P.M., Bazzaz, F.A. (1997) Light acquisition and growth by competing individuals in $CO_{2}$-enriched atmospheres: consequences for size structure in regenerating birch seedlings. Journal of Ecology 85, 29-42.   DOI   ScienceOn
126 Zhang, Y., Duan, B., Qiao, Y., Wang, K., Korpelainen, H., Li, C. (2008) Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated $CO_{2}$ and planting density. Forest Ecology and Management 255, 1937-1944.   DOI   ScienceOn
127 Zyryanova, O.A., Terazawa, M., Koike, T., Zyryanov, V.I. (2010) White birch trees as resource species of Russia: their distribution, ecophysiological features, multiple utilizations. Eurasian Journal of Forest Research 13, 25-40.
128 Wang, Y.P., Rey, A., Jarvis, P.G. (1998) Carbon balance of young birch trees grown in ambient and elevated atmospheric $CO_{2}$ concentrations. Global Change Biology 4, 797-807.   DOI   ScienceOn
129 Wittig, V.E., Ainsworth, E.A., Long, S.P. (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant, Cell and Environment 30, 1150- 1162.   DOI   ScienceOn
130 Matyssek, R., Karnosky, D.F., Wieser, G., Percy, K., Oksanen, E., Grams, T.E.E., Kubiske, M., Hanke, D., Pretzsch, H. (2010) Advances in understanding ozone impacts on forest trees: messages from novel phytotron and free-air fumigation studies. Environmental Pollution 158, 1990-2006.   DOI   ScienceOn
131 Lamson, N.I. (1990) Sweet birch. Betula lenta L. In Silvics of North America, vol.2, Hardwoods (Burns, R.M. and Honkala, B.H. Eds), USDA Agriculture Handbook 654, http://www.na.fs.fed.us/pubs/silvics_manual/volume_ 2/betula/lenta.htm, retrieved on 10th Jan. 2012.
132 Landolt, W., Günthardt-Goerg, M.S., Pfenninger, I., Einig, W., Hampp, R., Maurer, S., Matyssek, R. (1997) Effect of fertilization on ozone-induced changes in the metabolism of birch (Betula pendula) leaves. New Phytologist 137, 389-397.   DOI   ScienceOn
133 Lindroth, R.L. (2010) Impacts of elevated atmospheric $CO_{2}$ and $O_{3}$ on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology 36, 2-21.   DOI
134 Lindroth, R.L., Kopper, B.J., Parsons, W.F.J., Bockheim, J.G., Karnosky, D.F., Hendrey, G.R., Pregitzer, K.S., Isebrands, J.G., Sober, J. (2001) Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environmental Pollution 115, 395-404.   DOI   ScienceOn
135 Liu, L., King, J.S., Giardina, C.P. (2007) Effects of elevated atmospheric $CO_{2}$ and tropospheric $O_{3}$ on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant and Soil 299, 65-82.   DOI
136 Lorenz, K., Lal, R. (2010) Carbon Sequestration in Forest Ecosystems. Springer, pp. 5-11.
137 Yamaji, K., Julkunen-Tiitto, R., Rousi, M., Freiwald, V., Oksanen, E. (2003) Ozone exposure over two growing seasons alters root-to-shoot ratio and chemical composition of birch (Betula pendula Roth). Global Change Biology 9, 1363-1377.   DOI   ScienceOn
138 Wittig, V.E., Ainsworth, E.A., Naidu, S.L., Karnosky, D.F., Long, S.P. (2009) Quantifying the impact of current and future tropospheric ozone on biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology 15, 396-424.   DOI   ScienceOn
139 Wittmann, C., Matyssek, R., Pfanz, H., Humar, M. (2007) Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Environmental Pollution 150, 258-266.   DOI   ScienceOn
140 Yamaguchi, M., Watanabe, M., Matsumura, H., Kohno, Y., Izuta, T. (2011) Experimental studies on the effects of ozone on growth and photosynthetic activity of Japanese forest tree species. Asian Journal of Atmospheric Environment 5, 65-78.   DOI   ScienceOn
141 Kubiske, M.E., Pregitzer, K.S. (1997) Ecophysiological responses to simulated canopy gaps of two tree species of contrasting shade tolerance in elevated $CO_{2}$. Functional Ecology 11, 24-32.   DOI   ScienceOn
142 Luo, Y., Canadell, J., Mooney, H.A. (1999) Interactive effects of carbon dioxide and environmental stress on plants and ecosystems. In Carbon Dioxide and Environmental Stress (Luo, Y. and Mooney, H.A. Eds), Academic Press, San Diego, pp. 393-408.
143 Maenpaa, M., Riikonen, J., Kontunen-Soppela, S., Rousi, M., Oksanen, E. (2011) Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula. Tree Physiology 31, 808-818.   DOI   ScienceOn
144 Kubiske, M.E., Pregitzer, K.S. (1996) Effects of elevated $CO_{2}$ and light availability on the photosynthetic light response of trees of contrasting shade tolerance. Tree Physiology 16, 351-358.   DOI   ScienceOn
145 Kubiske, M.E., Quinn, V.S., Marquardt, P.E., Karnosky, D.F. (2007) Effects of elevated atmospheric $CO_{2}$ and/or $O_{3}$ on intra- and interspecific competitive ability of aspen. Plant Biology 9, 342-355.   DOI   ScienceOn
146 Kull, O., Tulva, I., Vapaavuori, E. (2003) Influence of elevated $CO_{2}$ and $O_{3}$ on Betula pendula Roth crown structure. Annals Botany 91, 559-569.   DOI   ScienceOn
147 Kume, A., Numata, S., Watanabe, K., Honoki, H., Nakajima, H., Ishida, M. (2009) Influence of air pollution on the mountain forests along the Tateyama-Kurobe Alpine route. Ecological Research 24, 821-830.   DOI
148 Kuokkanen, K., Yan, S., Niemelä, P. (2003) Effects of elevated $CO_{2}$ and temperature on the leaf chemistry of birch Betula pendula (Roth) and the feeding behaviour of the weevil Phyllobius maculicornis. Agriculture and Forest Entomology 5, 209-217.   DOI   ScienceOn
149 Lambers, H., Chapin, F.S., Pons, T.L. (2008) Plant Physiological Ecology. (2nd Ed.), Springer, pp. 58-59.
150 Kurschner, W.M., Wagner, F., Visscher, E.H., Visscher, H. (1997) Predicting the response of leaf stomatal frequency to a future $CO_{2}$-enriched atmosphere: constraints from historical observations. Geologische Rundschau 86, 512-517.   DOI
151 Kontunen-Soppela, S., Ossipov, V., Ossipova, S., Oksanen, E. (2007) Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Global Change Biology 13, 1053-1067.   DOI   ScienceOn
152 Kontunen-Soppela, S., Riikonen, J., Ruhanen, H., Brosché, M., Somervuo, P., Peltonen, P., Kangasjärvi, J., Auvinen, P., Paulin, L., Keinänen, M., Oksanen, E., Vapaavuori, E. (2010) Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated $CO_{2}$ and tropospheric ozone. Plant, Cell and Environment 33, 1016-1028.   DOI   ScienceOn
153 Kopper, B.J., Lindroth, R.L., Nordheim, E.V. (2001) $CO_{2}$ and $O_{3}$ effects on paper birch (Betulaceae: Betula papyrifera) phytochemistry and whitemarked tussock moth (Lymantriidae: Orgyia leucostigma) performance. Environmental Entomology 30, 1119-1126.   DOI   ScienceOn
154 Körner, C., Morgan, J., Norby, R. (2007) $CO_{2}$ fertilization: when, where, how much? In Terrestrial Ecosystems in a Changing World (Canadell, J.G., Pataki, D.E. and Pitelka, L.F. Eds), Springer, Berlin, pp. 9-22.
155 Kostiainen, K., Jalkanen, H., Kaakinen, S., Saranpaa, P. (2006) Wood properties of two silver birch clones exposed to elevated $CO_{2}$ and $O_{3}$. Global Change Biology 12, 1230-1240.   DOI   ScienceOn
156 Koike, T. (1988) Leaf structure and photosynthetic performance as related to the forest succession of deciduous broad-leaved trees. Plant Species Biology 3, 77-87.   DOI
157 Kostiainen, K., Kaakinen, S., Warsta, E., Kubiske, M.E., Nelson, N.D., Sober, J., Karnosky, D.F., Saranpää, P., Vapaavuori, E. (2008) Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of $CO_{2}$ and $O_{3}$. Tree Physiology 28, 805-813.   DOI   ScienceOn
158 Kruijt, B., Barton, C., Rey, A., Jarvis, P.G. (1999) The sensitivity of stand-scale photosynthesis and transpiration to changes in atmospheric $CO_{2}$ concentration and climate. Hydrology and Earth System Sciences 3, 55- 59.   DOI
159 Kohno, Y., Matsumura, H., Ishii, T., Izuta, T. (2005) Establishing critical levels of air pollutants for protecting East Asian vegetation-A challenge. In Plant Responses to Air Pollution and Global Change (Omasa, K., Nouchi, I. and De Kok, L.J. Eds), Springer, pp. 243-250.
160 Koike, T. (1995a) Physiological ecology of the growth characteristics of Japanese mountain birch in northern Japan: a comparison with Japanese mountain white birch. In Vegetation Science in Forestry (Box, E.O., Peet, R.K., Miyazawa, T., Yamada, I., Fujiwara, K. and Maycock, P.F. Eds), Kluwer Academic Publishers, The Netherlands, pp. 409-422.
161 Koike, T. (1995b) Effects of $CO_{2}$ in interaction with temperature and soil fertility on the foliar phenology of alder, birch, and maple seedlings. Canadian Journal of Botany 73, 149-157.   DOI   ScienceOn
162 Koike, T., Lei, T.T., Maximov, T.C., Tabuchi, R., Takahashi, K., Ivanov, B.I. (1996) Comparison of the photosynthetic capacity of Siberian and Japanese birch seedlings grown in elevated $CO_{2}$ and temperature. Tree Physiology 16, 381-385.   DOI   ScienceOn
163 Kolb, T.E., Matyssek, R. (2003) Limitations and perspectives about scaling ozone impacts in trees. In Air Pollution, Global Change and Forests in the New Millennium (Karnosky, D.F., Percy, K.E., Chappelka, A.H., Simpson, C. and Pikkarainen, J. Eds), Developments in Environmental Science vol.3., Elsevier, Oxford, pp. 141-174.
164 Koike, T., Tobita, H., Shibata, T., Matsuki, S., Konno, K., Kitao, M., Yamashita, N., Maruyama, Y. (2006) Defense characteristics of seral deciduous broad-leaved tree seedlings grown under differing levels of $CO_{2}$ and nitrogen. Population Ecology 48, 23-29.   DOI