Browse > Article
http://dx.doi.org/10.5572/ajae.2011.5.2.097

A Study on Three Factors Influencing Uptake Rates of Nitric Acid onto Dust Particles  

Song, Chul-Han (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Kim, Chung-Man (Korea Ocean Research & Development Institute (KORDI))
Publication Information
Asian Journal of Atmospheric Environment / v.5, no.2, 2011 , pp. 97-104 More about this Journal
Abstract
Recent studies have indicated that the observed nitric acid ($HNO_3$) uptake rates ($R_{HNO_3}$) onto dust particles are much slower than $R_{HNO_3}$ used in the previous modeling studies. Three factors that possibly affect $R_{HNO_3}$ onto dust particles are discussed in this study: (1) the magnitude of reaction probability of $HNO_3$ (${\gamma}_{HNO_3}$), (2) aerosol surface areas, and (3) gas-phase $HNO_3$ mixing ratio. Through the discussion presented here, it is shown that the use of accurate ${\gamma}_{HNO_3}$ is of primary importance. We suggest that the use of ${\gamma}_{HNO_3}$ values between $\sim10^{-3}$ and $\sim10^{-5}$ produces more realistic results than the use of ${\gamma}_{HNO_3}$ values between $\sim10^{-1}$ and $\sim10^{-2}$ does, more accurately modeling the nitrate formation characteristics on/in dust particles. We also discuss two different types of aerosol surface area, active and geometric, since the use of different aerosol surface areas often leads to an erroneous result in $R_{HNO_3}$. In addition, the levels of the gas-phase $HNO_3$ are investigated with the example cases of TRACE-P DC-8 flights in East Asia. The $HNO_3$ levels were found to be relatively high, indicating that they can not limit nitrate formation in dust particles.
Keywords
Reaction probability; Dust particles; Nitric acid; Uptake rates; Aerosol surface area;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Umann, B., Arnold, F., Schaal, C., Hanke, M., Uecker, J., Aufmhoff, H., Balkanski, Y., Van Dingenen, R. (2005) Interaction of mineral dust with gas phase nitric acid and sulfur dioxide during the MINATORIC II field campaign: First estimate of the uptake coefficient ${\gamma}HNO_3$ from atmospheric data. Journal of Geophysical Research-Atmospheres 110, 22306-22323.   DOI
2 Underwood, G.M., Li, P., Al-Abadleh, H., Grassian, V.H. (2001a) A knudsen cell study of the heterogeneous reactivity of nitric acid on oxide and mineral dust particles. Journal of Physical Chemistry A 105, 6609-6620.   DOI   ScienceOn
3 Underwood, G.M., Song, C.H., Phadnis, M., Carmichael, G.R., Grassian, V.H. (2001b) Heterogeneous reactions of $NO_2$ and $HNO_3$ on oxides and mineral dust: A combined laboratory and modeling study. Journal of Geophysical Research-Atmospheres 106, 18055-18066.   DOI
4 Zhang, D., Iwasaka, Y. (1999) Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in the spring of 1995 and 1996. Atmospheric Environment 33, 3213-3223.   DOI   ScienceOn
5 Zhang, D., Zang, J., Shi, G., Iwasaka, Y., Matsuki, A., Trochkine, D. (2003) Mixture of individual Asian dust particles at a coastal site of Qingdao, China. Atmospheric Environment 37, 3895-3901.   DOI   ScienceOn
6 Zhang, Y., Sunwoo, Y., Kothamarthi, V., Carmichael, G.R. (1994) Photochemical oxidant processes in the presence of dust: An evaluation of the impact of dust on particulate nitrate and ozone formation. Journal of Applied Meteorology 33, 813-824.   DOI   ScienceOn
7 Zhang, Y., Carmichael, G.R. (1999) The role of mineral aerosol in tropospheric chemistry in East Asia-A model study. Journal of Applied Meteorology 38(3), 353-366.   DOI   ScienceOn
8 Pandis, S.N., Baltensperger, U., Wolfenbarger, J.K., Seinfeld, J.H. (1991) Inversion of aerosol data from the epiphanometer. Journal of Aerosol Science 22(4), 417-428.   DOI   ScienceOn
9 Ro, C.-U., Hwang, H., Kim, H., Chun, Y., Van Grieken, R. (2005) Single particle characterization of four "Asian Dust" samples collected in Korea, using low-Z particle electron probe X-ray microanalysis. Environmental Science & Technology 39, 1409-1419.   DOI   ScienceOn
10 Sander, R., Crutzen, P.J. (1996) Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. Journal of Geophysical Research-Atmospheres 101, D4, doi:10.1029/95JD03793.
11 Seinfeld, J.H., Pandis, S.N. (1998) Atmospheric chemistry and physics. A Wiley-Interscience Publication, New York, p. 604.
12 Shi, J.P., Harrison, R.M., Evans, D. (2001) Comparison of ambient particle surface area measurement by epiphaniometer and SMPS/APS. Atmospheric Environment 35, 6193-6200.   DOI   ScienceOn
13 Song, C.H., Carmichael, G.R. (2001) Gas-particle partitioning of nitric acid modulated by alkaline aerosol. Journal of Atmospheric Chemistry 40, 1-22.   DOI   ScienceOn
14 Song, C.H., Maxwell-Meier, K., Weber, R.J., Kapustin, V., Clarke, A. (2005) Dust composition and mixing state inferred from airborne composition measurements during ACE-Asia C130 Flight#6. Atmospheric Environment 39, 359-369.   DOI   ScienceOn
15 Song, C.H., Kim, C.M., Lee, Y.J., Carmichael, G.R., Lee, B.K., Lee, D.S. (2007) An evaluation of reaction probabilities of sulfate and nitrate precursors onto East Asian dust particles. Journal of Geophysical Research-Atmospheres 112, D18206, doi:10.1029/2006JD008092.   DOI
16 Hanisch, F., Crowley, J.N. (2001a) Heterogeneous reactivity of gaseous nitric on authentic mineral dust samples, and on individual mineral and clay mineral components. Physical Chemistry Chemical Physics 3, 2474-2482.   DOI   ScienceOn
17 Hanisch, F., Crowley, J.N. (2001b) Heterogeneous reactivity of gaseous nitric acid on $Al_2O_3$, $CaCO_3$, and atmospheric dust samples: A Knudsen cell study. Journal of Physical Chemistry A 105, 3096-3106.   DOI   ScienceOn
18 Jaenicke, R. (1993) Troposphere aerosols, in Aerosol-Cloud-Climate Interactions (Hobbs, P.V. Ed.), Academic Press, San Diego, pp. 1-31.
19 Johnson, E.R., Sciegienka, J., Carlos-Cuellar, S., Grassian, V.H. (2005) Heterogeneous uptake of gaseous nitric acid on dolomite ($CaMg(CO_3)_2$,/TEX>) and calcite ($CaCO_3$) particles: A Knudsen cell study using multiple, single, and fractional particle layers. Journal of Physical Chemistry A 109, 6901-6911.   DOI   ScienceOn
20 Kim, K.J., Song, C.H., Ghim, Y.S., Won, J.G., Yoon, S.C., Carmichael, G.R., Woo, J.-H. (2006) An investigation on $NH_3$ emissions and particulate ${NH_4}^+$ and ${NO_3}^-$ formation in East Asia. Atmospheric Environment 40, 2139-2150.   DOI   ScienceOn
21 Maxwell-Meier, K., Weber, R.J., Song, C.H., Orsini, D., Ma, Y., Carmichael, G.R., Streets, D.G., Blomquist, B. (2004) Inorganic composition of fine particles in mixed mineral dust-pollution plumes observed from airborne measurements during ACE-Asia. Journal of Geophysical Research-Atmospheres 109, D19S07, doi:10.1029/2003JD004464.   DOI
22 Meskhidze, N., Chameides, W.L., Nenes, A., Chen, G. (2003) Iron mobilization in mineral dust: Can anthropogenic $SO_2$ emissions affect ocean productivity. Geophysical Research Letters 30(21), 2085, doi:10.1029/2003GL018035.   DOI
23 Bauer, S.E., Balkanski, Y., Schulz, M., Hauglusteine, D. (2004) Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations. Journal of Geophysical Research-Atmospheres 109, D02304, doi:10.1029/2003JD003868.   DOI
24 Dentener, F.J., Carmichael, G.R., Zhang, Y., Lelieveld, J., Crutzen, P.J. (1996) Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research-Atmospheres 101, 22869-22889.   DOI
25 Draxler, R.R., Hess, G.D. (1998) An overview of the HYSPLIT_4 modeling system for trajectories, dispersion and deposition. Australian Meteorological Magazine 47(4), 295-308.
26 Fenter, F., Caloz, F., Rossi, M.J. (1995) Experimental evidence for the efficient "Dry deposition" of nitric acid on calcite. Atmospheric Environment 29(22), 3365-3327.   DOI   ScienceOn
27 Fuchs, N.A., Sutugin, A.G. (1971) High dispersed aerosols, in Tropics in Current Aerosol Research (Hidy, G.M. and Brock, J.R. Eds), Peragamon, New York, pp. 1-200.