Browse > Article
http://dx.doi.org/10.14773/cst.2018.17.5.225

Corrosion Inhibition of Steel by Addition of Birch Sap in Chloride Solution  

Park, Tae-Jun (Department of Advanced Materials Engineering, Chosun University)
Kim, Ki Ae (Department of Environmental Science and Engineering, Ewha Womans Universigy)
Lee, Ji Yi (Department of Environmental Science and Engineering, Ewha Womans Universigy)
Jang, HeeJin (Department of Materials Science and Engineering, Chosun University)
Publication Information
Corrosion Science and Technology / v.17, no.5, 2018 , pp. 225-230 More about this Journal
Abstract
The effects of birch sap, a possible natural corrosion inhibitor, on the corrosion behavior of steel in chloride solution were investigated. The corrosion rate was significantly reduced by the addition of 1~5 mL of birch sap to 500 mL of 3wt% NaCl or 3wt% $CaCl_2$ solution. A remarkable increase in the pitting potential in NaCl solution was observed by the addition of birch sap although it was almost constant in $CaCl_2$ solution. The corrosion rate of steel in both NaCl and $CaCl_2$ birch sap solution without addition of water was higher compared to that of aqueous solution without birch sap as the pH of the birch sap was 4.0. The presence of organic compounds like, fructose, galactose, glucose, and palmitic acid in the birch sap are thought to be adsorbed effectively on the metal surface, which provided corrosion protection. However, the inorganic elements including Na, Ca, K, Mg, Mn, S, etc. present in the birch sap exhibited no role in corrosion inhibition.
Keywords
Steel; Chloride solution; Natural inhibitor; Birch Sap;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Public Procurement Service, http://www.pps.go.kr
2 Korea Expressway Corporation, http://www.ex.co.kr
3 C. Andrade, M. Keddam, X. R. Novoa, M. C. Perez, C. M. Rangel, and H. Takenouti, Electrochim. Acta, 46, 3905 (2001).   DOI
4 A. Krolikowski and J. Kuziak, Electrochim. Acta, 56, 7845 (2011).   DOI
5 D. E. Abd-El-Khalek and B. A. Abd-El-Nabey, Desalination, 311, 227 (2013).   DOI
6 J. H. Jeong, Conserv. Sci., 33, 381 (2017).   DOI
7 P. Li, J. Y. Lin, K. L. Tan, and J. Y. Lee, Electrochim. Acta, 42, 605 (1997).   DOI
8 C. Monticelli, A. Frignani, and G. Trabanelli, Cement Concrete Res., 30, 635 (2000).   DOI
9 A. Rajasekar, B. Anandkumar, S. Maruthamuthu, Y. P. Ting, and P. K. S. M. Rahman, Appl. Microbiol. Biot., 85, 1175 (2010).   DOI
10 A. Rajasekar, S. Maruthamuthu, N. Palaniswamy, and A. Rajendran, Microbiol. Res., 162, 355 (1998).
11 Cargill Inc., Corrosion-inhibiting deicer composition, US7658861B2 (2006. 05. 31.).
12 A. Y. El-Etre, Corros. Sci., 40, 1845 (1998).   DOI
13 I. Hamdani, E. El Ouariachi, O. Mokhtari, A. Salhi, A. Bouyanzer, A. Zarrouk, B. Hammouti, and J. Costa, Der Pharmacia Lettre, 8, 79 (2016).
14 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous solutions, NACE (1974).
15 M. H. O. Ahmed, A. A. Al-Amiery, Y. K. Al-Majedy, A. A. Kadhum, A. B. Mohamad, and T. S. Gaaz, Results Phys., 8, 728 (2018).   DOI
16 V. S. Sastri, Corrosion Inhibitors: Principles and Applications, Wiley, New York (1998).
17 A. A. Al-Amiery, A. Y. Musa, A. A. H. Kadhum, and A. Mohamad, Molecules, 16, 6833 (2011).   DOI
18 G. Khan, K. M. S. Newaz, W. J. Basirun, H. B. M. Ali, F. L. Faraj, and G. M. Khan, Int. J. Electrochem. Sci., 10, 6120 (2015).
19 K. Xhanari, and M. Finsgar, Arabian Journal of Chemistry, in press (2016). https://doi.org/10.1016/j.arabjc.2016.08.009   DOI